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Purpose: The main purpose of the study is to develop and test an image classification algorithm 5 

inspired by the mechanisms of gas chromatography. The research aims to transfer theoretical 6 

concepts from analytical chemistry—such as retention time and the number of theoretical 7 

plates—into the field of image processing. The motivation stems from the need for effective 8 

extraction and differentiation of visual features, particularly in domains where internal 9 

structural differences are subtle or where shape deformation occurs. 10 

Design/methodology/approach: The proposed method treats input images as complex 11 

mixtures of visual components (analogous to chemical substances) and decomposes them into 12 

subimages that are transformed into chromatograms. The algorithm performs feature extraction 13 

using simulated chromatographic separation, followed by background subtraction and peak 14 

comparison. The classification is based on matching the extracted chromatographic peaks 15 

against reference classes. Two types of datasets were used to validate the approach: synthetic 16 

blood cell images (medical domain) and geometric shape figures (industrial domain), both with 17 

controlled distortions. The influence of subimage size and the number of theoretical plates on 18 

classification performance was systematically tested. 19 

Findings: The experiments confirm that the classifier’s effectiveness strongly depends on both 20 

the resolution of the chromatographic decomposition (i.e., the number of plates) and the 21 

subimage size. For blood cells, the best results (precision 0.78) were achieved with a subimage 22 

size of 4×4 and a high number of plates (100,000). In the case of shape classification, the highest 23 

precision (0.84) was obtained for 60×60 subimages and 50 plates. The study shows that 24 

excessive resolution can lead to overfitting, while too little generalization limits the algorithm’s 25 

sensitivity to subtle differences.Research limitations/implications: The approach is tested on 26 

synthetic datasets, which—while offering control over feature variance—may not reflect all the 27 

complexities of real-world data. Future research should include validation on real medical 28 

images and industrial visual inspection systems. Additionally, comparative benchmarks against 29 

conventional machine learning classifiers (e.g., CNNs) could strengthen the results.  30 

Practical implications: The proposed method is applicable in areas requiring robust and 31 

explainable classification of complex image data. In medicine, it can support blood diagnostics 32 

by highlighting morphologically relevant features of leukocytes. In industry, it can enhance 33 

automated inspection systems by enabling recognition of deformed parts without reliance on 34 

purely edge-based or shape-based detection. 35 

Originality/value: The article presents an original and interdisciplinary algorithm that 36 

combines principles of gas chromatography with image analysis. It introduces a novel metaphor 37 

for feature decomposition and demonstrates its applicability in both medical and industrial 38 
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scenarios. This approach expands the set of tools available for interpretable and structure-aware 1 

image classification. 2 

Keywords: gas chromatography, image classification, feature extraction, synthetic dataset, 3 

biomedical imaging. 4 

Article classification: Research paper, Technical paper. 5 

1. Introduction 6 

Image recognition is a key area of research in artificial intelligence, image processing,  7 

and computer vision. The main goal of this process is the identification and classification of 8 

objects, patterns, or scenes depicted in digital images. Systems designed for image recognition 9 

face numerous challenges, such as varying lighting conditions, noise, rotation, scaling, 10 

geometric deformations, and partial occlusion of the objects being analyzed. 11 

Modern approaches to image recognition are primarily based on machine learning 12 

techniques, especially deep learning methods that enable effective extraction and representation 13 

of relevant visual features. These techniques, including convolutional neural networks (CNNs), 14 

allow for automatic learning of hierarchical representations from large datasets. In contexts 15 

where interpretability is crucial, classical feature extraction methods such as HOG (Histogram 16 

of Oriented Gradients) or SIFT (Scale-Invariant Feature Transform) are also applied. 17 

This study introduces an innovative image recognition approach inspired by the 18 

mechanisms of gas chromatography. The proposed method treats image data as mixtures of 19 

visual components that undergo a separation process based on their structural, textural, or color 20 

properties. A key element of the method is the analogy to chromatographic processing— 21 

each image fragment is assigned a so-called retention time, which reflects its “affinity” toward 22 

a stationary phase in a modeled chromatographic column. 23 

This decomposition enables the extraction of features essential for classification while 24 

reducing the influence of interfering components. By applying chromatographic separation 25 

principles, the image is transformed into a chromatogram, which serves as a compact 26 

representation suitable for further analysis, segmentation, or classification. 27 

The proposed method can serve as an alternative or a complement to classical image 28 

processing techniques, especially in applications requiring interpretability, robustness to 29 

deformation, and fine-grained differentiation of internal object structures. 30 

  31 
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2. Chromatographic Data Processing Method 1 

The chromatographic data decomposition method, inspired by the principles of gas 2 

chromatography, is based on specific theoretical assumptions. It is assumed that input vectors 3 

submitted for classification represent mixtures of components with an unknown composition. 4 

In the proposed algorithm, it is assumed that the decomposition of the input vector results 5 

in the formation of sub-vectors of equal length, which enables their further analytical 6 

processing. This approach mirrors the separation process observed in classical chromatography 7 

but is adapted to the context of multidimensional data representation and analysis. 8 

2.1. Principle of chromatographic data processing 9 

The core idea of the chromatographic data decomposition method is as follows: the method 10 

consists of several processing stages. In the first stage, the input vector is divided into smaller 11 

sub-vectors, for which the affinity with respect to the stationary phase is calculated.  12 

This parameter determines the migration speed of individual sub-vectors through a modeled 13 

chromatographic column, directly affecting the so-called retention time—that is, the duration  14 

a given sub-vector remains within the column. 15 

After the migration is completed, the vectors exiting the column are counted. Vectors with 16 

identical retention times are treated by the algorithm as equivalent in terms of data 17 

representation. As a result of this process, a chromatographic spectrum is obtained, which 18 

reflects the relationship between the number of vectors sharing the same retention time and 19 

their corresponding migration time. 20 

The chromatographic decomposition algorithm has been described in detail in previous 21 

publications (Święcicki, 2024). Therefore, this article presents only those components of the 22 

algorithm that are directly relevant to the proposed image processing methods. 23 

2.2. Image Representation 24 

The image is represented as a two-dimensional array, where each element takes a value in 25 

the range from 0 to 255, corresponding to a grayscale representation. According to the 26 

fundamental assumption of the chromatographic data decomposition method, such an array is 27 

interpreted as a mixture of chemical compounds that are subject to further processing.  28 

In the next stage, the image is divided into subregions of equal size, treated as subarrays.  29 

Each of these subarrays is then processed by the algorithm, which computes a corresponding 30 

retention time for each one (Baxes, n.d.; Young et al., 1995). 31 
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Figure 1. Division of the image, which is a mixture, into four subregions that will be treated as four 1 
“substances” for which the retention time will be calculated. 2 

The Błąd! Nie można odnaleźć źródła odwołania. illustrates the process of converting an 3 

image into a chromatogram,  4 

which serves as the core structure used in subsequent stages of image processing.  5 

As demonstrated, the image—interpreted as a mixture—has been divided into one hundred 6 

subregions, each corresponding to an individual “substance” in the context of the 7 

chromatographic data decomposition algorithm. For each of these subregions, a retention time 8 

is calculated. It is important to note that the retention time value is directly dependent on the 9 

distribution of pixel values within the respective subregion. 10 

 

Figure 2. The process of converting an image into a chromatogram. 11 



Application of gas chromatography methods… 517 

The result of calculating the retention time for each subregion and performing the grouping 1 

process is a chromatogram. The height of individual bars (peaks) in the chromatogram is 2 

determined by the number of subregions that share the same retention time. 3 

2.3. Chromatographic Decomposition Algorithm 4 

Algorithm 1 presents a method for chromatographic data separation inspired by the gas 5 

chromatography technique. The input data for the algorithm is an image P, which in a special 6 

case can be a color image represented as an RGB array. The next input parameters are N1 and 7 

M1, defining the size of the subregions into which the input image will be divided. The last 8 

parameter is a variable corresponding to the resolution in the chromatographic system, called 9 

the number of plates, determined by the length of the chromatographic column. The longer the 10 

chromatographic column, the higher the resolution of the chromatograph. Similarly, in the 11 

presented algorithm, increasing this parameter improves the resolution of the data separation. 12 

 

Algorithm 1. Chromatogram-Based Data Decomposition Algorithm. 
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The algorithm begins by processing the input image P, which is represented as a two-1 

dimensional matrix of dimensions M × N. This image is treated as a mixture of substances, 2 

where each substance corresponds to a fragment of the image — a so-called subregion of size 3 

M₁  × N₁ . Dividing the image into such non-overlapping subregions allows for the analysis of 4 

local properties of the image assigned to individual substances. 5 

For each subregion, an affinity value to the stationary phase is calculated, which is a key 6 

parameter in chromatography. Based on this value, the retention time is determined, describing 7 

how long a given substance “resides” in the chromatographic column. In the context of the 8 

algorithm, the retention time is discretized into one of the predefined points corresponding to 9 

chromatographic “plates,” which ensures the resolution of substance recognition. 10 

Next, substances (subregions) with the same retention time are grouped together.  11 

Such a group is represented as a single peak on the chromatogram, whose height is proportional 12 

to the number of substances belonging to that group. As a result, a histogram of retention times 13 

— a chromatogram — is created, which serves as the basis for further image analysis. 14 

By applying this approach, the algorithm maps chromatographic properties, transferring the 15 

concept of mixture separation to the problem of image segmentation and classification. In this 16 

way, efficient recognition and grouping of image fragments with similar features is possible, 17 

which can support further image recognition tasks, such as classification or object detection. 18 

3. Implementation of selected image processing methods 19 

The image recognition process requires prior execution of appropriate preliminary 20 

operations on the image, which enable more effective extraction of features essential for further 21 

analysis. Therefore, in this work, selected image processing techniques are presented that have 22 

been applied as steps preceding the actual recognition process. These techniques have been 23 

implemented in the context of the developed chromatographic data separation algorithm, 24 

constituting an integral part of the input data preparation for analysis and classification. 25 

In this section, the image processing operations carried out using mechanisms and data 26 

provided by the chromatographic data separation algorithm will be presented. The foundation 27 

of all presented operations is the chromatogram, which serves as a key structure representing 28 

information about the internal organization and composition of the processed image. It can be 29 

stated that the chromatogram functions as the central element in the image analysis process and 30 

is utilized in all the proposed algorithms. 31 

Thanks to the direct linkage between a specific peak in the chromatogram and its 32 

corresponding subregion — treated as a substance in the mixture that the image represents — 33 

selective processing of chosen image fragments is possible. All the presented operations can be 34 

interpreted as filtering actions, analogous to those occurring in actual chromatographic systems. 35 
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Figure 1. Phases of image processing using the chromatographic data separation algorithm. 

Figure 1 illustrates the successive stages of the image processing procedure. In the first 1 

processing phase, the input image is divided into smaller subimages, which are interpreted as 2 

substances in a mixture. For each subimage, the level of interaction with the stationary phase is 3 

calculated, leading to the determination of its corresponding retention time. 4 

In the next phase, grouping of substances—that is, subregions of the image—with similar 5 

or identical retention time values is performed. As shown in the presented diagram, multiple 6 

image fragments whose characteristics result in the same retention time can be assigned to  7 

a single peak in the histogram (chromatogram). The figure illustrates a case where different 8 

subimages with the same retention value are assigned to a peak marked with specific numbers, 9 

clearly indicating their similarity within the adopted analysis model(Young et al., 1995). 10 

3.1. Image operations 11 

In the following part of the article, the image preprocessing operations, which constitute  12 

a preparatory stage for the actual recognition process, will be presented. Although the general 13 

properties of these operations are well known and widely described in the literature, this article 14 

focuses on their implementation using the chromatographic data separation method (Young  15 

et al., 1995). 16 

The image processing operations presented later in this work include two main groups.  17 

The first group comprises filtering operations based on chromatogram analysis. This category 18 

includes, among others, the chromatogram subtraction operation and the removal of common 19 

peaks, which enable selective extraction of significant image fragments. The second group 20 

consists of morphological operations, which are a key preparatory step in the image recognition 21 

process. Within this group, the implementation of the dilation operation (object expansion) will 22 

be demonstrated, allowing, among other things, the reconstruction of object structures and 23 

elimination of minor disturbances. 24 
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3.2. Removal of the peak with the highest concentration 1 

The algorithm presents a sequence of operations aimed at eliminating selected substances 2 

from the mixture—represented by an image—based on chromatogram analysis. Specifically, 3 

those components (subimages) that exhibit the highest concentration, corresponding to the 4 

greatest number of occurrences of the same retention time value, are removed. The basis for the 5 

elimination decision is the structure of the chromatogram, which reflects the distribution of 6 

substances within the image. The input arguments of the algorithm are: the processed image, 7 

parameters defining the sizes of the subimages, and the number of chromatographic plates, 8 

which corresponds to the degree of resolution of the applied chromatographic data separation 9 

algorithm. 10 

 

Algorithm 2. Algorithm for Eliminating Dominant Subimages from an Image. 

The algorithm presented as the “Chromatographic elimination of the most abundant 11 

substances” is inspired by the process of gas chromatography and constitutes a part of image 12 

processing utilizing a chemical model. Its goal is to remove from the image those fragments 13 

(subregions) that occur most frequently — analogous to removing substances with the highest 14 

concentration from a mixture (Sparkman, 2005; Stilo et al., 2021). 15 

  16 
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The elimination algorithm for subregions with the highest concentration is based on the 1 

analogy to the gas chromatography process, in which a mixture of substances is separated in  2 

a column based on differences in retention times. In the first stage, the input image is treated as 3 

a set of non-overlapping subregions (substances), obtained by dividing the pixel matrix into 4 

blocks of specified dimensions. For each such subregion, an affinity value to the stationary 5 

phase is calculated — this parameter translates into a retention time, which is then discretized 6 

to the nearest point on a grid defined by the number of chromatographic plates. 7 

In the next step, a chromatogram is created — a histogram reflecting the distribution of the 8 

number of subregions as a function of retention time. The retention time value for which the 9 

number of corresponding subregions is the highest indicates the dominant “substance” in the 10 

analyzed mixture. Then, all subregions with that retention time value are removed from the 11 

image, which corresponds to eliminating the component with the highest concentration in 12 

classical chromatography. 13 

The result of the algorithm’s operation is a new image, devoid of the most strongly 14 

represented fragments, and an updated chromatogram. This enables targeted removal of 15 

overrepresented features, improving the efficiency of subsequent stages of image recognition 16 

or segmentation. Thus, the algorithm serves as a useful preprocessing tool, reducing 17 

interference caused by dominant structures. 18 

  

  

Figure 2. Image and chromatogram before and after removal of the dominant substance (number of 

plates = 4, sub‐ image size 5×5). 

  19 
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Figure 2 presents the effect of the algorithm for eliminating the substances with the highest 1 

concentration. As shown in the illustrations, the image at the bottom has had the fragment 2 

corresponding to the background removed. The second column contains chromatograms: on the 3 

left for the original image, and on the right for the image processed by the described algorithm. 4 

  
Figure 3. Image and chromatogram after removal of the dominant substance (number of plates = 4, 

sub-image size 5×5), obtained by three successive applications of the dominant-peak removal operation 

to the original image. 

Figure 6 shows the result of repeatedly applying the operation of removing the dominant 5 

peak from the image. As can be seen, this process leads to the separation of the object from the 6 

background, enabling its further analysis using subsequent object recognition operations. 7 

The presented chromatograms indicate that four chromatographic plates were used for the 8 

removal operation. As the number of plates increases, the generalization capability of the 9 

chromatographic algorithm decreases, which results in the need to perform the background 10 

removal process multiple times using the described procedure. 11 

3.3. The operation of subtracting two chromatograms 12 

The chromatogram subtraction operation presented below allows for highlighting the 13 

differences between two sets of image data, which is particularly useful in applications 14 

requiring change detection or background masking(Algorithms for Image Processing and 15 

Computer Vision Second Edition n.d.; Young et al. 1995). 16 

The chromatogram subtraction operation can be used to extract differences between images. 17 

Algorithm 3 presents the successive steps of this procedure. It takes as input the image 18 

partitioning parameters and the number of chromatographic plates, which define the resolution, 19 

as well as a reference chromatogram to be subtracted from the chromatogram of image P.  20 

It is assumed that both chromatograms were generated using identical parameters of the 21 

chromatographic data separation algorithm. 22 
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Algorithm 3. Algorithm for Subtracting Two Chromatograms. 

The chromatogram subtraction algorithm performs a comparison and removal of common 1 

peaks between the chromatogram of the input image and the reference chromatogram (ChSub). 2 

Initially, the image P of size M × N is divided into K non-overlapping subregions (of size 3 

M₁  × N₁ ), which are treated as separate “substances.” For each subregion, the retention time 4 

rtᵢ is calculated based on its affinity to the stationary phase, and then discretized to the nearest 5 

value tᵢ = RTₘᵢₘ + k·ΔRT, where ΔRT = (RTₘₐₓ – RTₘᵢₘ)/L and k ∈ {0, 1, …, L}. 6 

Next, the chromatogram Ch_P is constructed as a set of pairs (t, nₘ), where nₘ represents 7 

the number of subregions with retention time t. In a loop, each peak y = (tₘ, nₘ) from the 8 

reference chromatogram ChSub = {(tⱼ, nⱼ)} is examined, and for each tₘ, the corresponding 9 

mₘ in Ch_P is reduced by nₘ if |tₘ – tₘ| ≤ ε·ΔRT. If after subtraction mₘ ≤ 0, the peak is 10 

removed from Ch_P. As a result, we obtain a chromatogram C without the common peaks. 11 

  12 
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Finally, the modified image P′ is reconstructed by removing from P all subregions whose 1 

retention times are associated with the removed peaks. The algorithm returns the updated 2 

chromatogram C and the image P′, which is ready for subsequent stages of analysis (Schmidt-3 

Traub, Schulte, Seidel-Morgenstern 2020; Stilo et al., 2021). 4 

The chromatogram subtraction operation can be applied in two key areas of image 5 

processing. The first is object extraction through background removal, particularly in cases 6 

where the complex structure of the background makes simple filtering of the most abundant 7 

subregions ineffective—especially when the extracted object occupies a larger portion of the 8 

image than the background itself. The second area is skeletonization, which involves 9 

representing the shape of an object as a thin contour. This serves as an important stage in the 10 

image recognition process. 11 

 

 

Figure 4. Background Removal via Chromatogram Subtraction. 

Figure 4 presents the result of the chromatogram subtraction operation. The subtracted 12 

chromatogram was generated based on an image containing the background pattern. As shown 13 

on the right, the background has been removed, and the centrally positioned object is now 14 

prepared for further recognition processing. 15 

Skeletonization of the object—its representation as thin contours—plays a key role in the 16 

image recognition process, as it enables shape-based identification. In the context of the 17 

chromatographic data separation method, achieving such an effect is possible through 18 

appropriate processing of the obtained chromatogram: selecting and analyzing peaks 19 

corresponding to the structural boundaries of the object, and subsequently reconstructing the 20 

contour based on the grouped image fragments. 21 
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Figure 5. Skeletonization Resulting from Chromatogram Subtraction. 

Figure 5 shows the result of the chromatogram subtraction operation when the reference 1 

chromatogram was generated from images containing filled objects intended for 2 

skeletonization. On the left side of the figure, the extracted contours of these objects are visible. 3 

However, it should be emphasized that the quality of the result is significantly influenced by 4 

the choice of parameters: the number of chromatographic plates in the data separation algorithm 5 

and the value of the ε parameter, which defines the allowable deviation between the retention 6 

times of compared peaks.  7 

3.4. Algorithm for Removing Common Peaks Between Chromatograms 8 

In image processing using techniques inspired by gas chromatography, one of the key 9 

operations can be the identification and removal of common features that appear in multiple 10 

images. These features—represented by peaks with similar retention times in chromatograms—11 

may correspond to background elements, repetitive graphic patterns, or other information 12 

irrelevant to further analysis, such as classification or object recognition. 13 

The common peak removal algorithm enables the extraction of unique components that are 14 

present only in selected images. It operates by comparing chromatograms calculated for a set 15 

of images using identical chromatographic parameters. Common peaks (i.e., those with 16 

retention times differing by less than a specified tolerance threshold) are identified and removed 17 

from the chromatograms of all images, except the one that contains the fewest peaks, which is 18 

treated as the reference point. 19 

As a result, each modified image retains only unique features, which can significantly 20 

enhance the effectiveness of subsequent analysis stages—such as segmentation, pattern 21 

recognition, or machine learning. 22 
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Algorithm 4. Algorithm for Removing Common Peaks. 

The algorithm is designed for processing multiple images that have undergone 1 

chromatographic separation, aiming to remove common features—i.e., peaks with similar 2 

retention times—from most chromatograms. This approach can be useful in extracting unique 3 

object features from images or in classification tasks where only differences between objects 4 

matter. 5 

The algorithm input consists of a set of images P₁ , P₂ , ..., P_N, each of which has  6 

an associated chromatogram Ch₁ , Ch₂ , ..., Ch_N created based on dividing the image into 7 

subregions representing substances (i.e., image fragments). All chromatograms are generated 8 

using identical chromatographic resolution parameters—that is, the same number of shelves 9 

and the same minimum and maximum retention time values(Hage 1999; Martens et al., 2017; 10 

Robards, Ryan, 2021). 11 
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The first step of the algorithm is to identify the chromatogram with the smallest number of 1 

peaks, which is treated as the reference. Then, for each of the remaining chromatograms,  2 

its peaks are compared with the peaks of the reference chromatogram. If the difference between 3 

the retention times of the peaks does not exceed the given tolerance value epsilon (ε), these 4 

peaks are considered common and removed. In the final step, the chromatograms are 5 

recalculated by regrouping the substances based on their new retention times and contents. 6 

The algorithm returns modified chromatograms along with their corresponding images, 7 

from which common information has been removed—enabling further processing focused 8 

solely on the unique features of each image. 9 

 

 

Figure 6. Input image and image resulting from the application of the common peak removal algorithm. 

Figure 8 shows the result of the operation involving the removal of common peaks between 10 

chromatograms. As can be seen, this operation produced object contours, visible in the image 11 

on the left. Naturally, the quality of the obtained skeletons of individual objects is influenced 12 

by several parameters. 13 

The parameters that significantly influence the quality of the obtained contours (skeletons) 14 

are primarily: 15 

 The number of chromatographic shelves, which corresponds to the resolution of 16 

separation – the higher this number, the more precise the differentiation between 17 

substances (image fragments), but it can also lead to excessive data fragmentation. 18 

 The retention time range – the minimum and maximum retention times define the limits 19 

within which peaks can be located; selecting these values appropriately helps to better 20 

separate important features. 21 

 The value of the epsilon (ε) parameter – the tolerance for retention time differences 22 

when comparing peaks; too large a value may result in the removal of unique features, 23 

while too small a value may leave common information intact. 24 

 The selection of these parameters should be tailored to the characteristics of the 25 

analyzed images and the processing goal (e.g., classification, segmentation, feature 26 

extraction). 27 
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3.5. Dilation algorithm 1 

Dilation is one of the basic morphological operations used in image processing, mainly for 2 

binary images, although it can also be extended to grayscale images. It involves “expanding” 3 

objects by adding pixels to their boundaries. As a result, objects become larger, and small gaps, 4 

breaks, or irregularities in their structure are filled (Young et al., 1995). 5 

The dilation algorithm processes a single input chromatogram, ChInput, which contains  6 

a set of peaks and associated sub-image fragments representing substances. For each peak  7 

i with a non-zero retention time, chromatographic separation of the corresponding sub-image 8 

fragment is performed using the function split_chromatogram, applying appropriate parameters 9 

such as sub-image dimensions, number of shelves, and minimum and maximum retention times. 10 

Among the separation results, the sub-image fragment corresponding to the peak with the 11 

highest retention time and greatest frequency of occurrence is selected. Then, all other sub-12 

image fragments in the chromatogram—including those related to peaks with zero retention 13 

time—are modified relative to the selected fragment (Giddings, 2017; Gupta, Biswas, 2023; 14 

Mondello et al., 2008). 15 

Based on these modified sub-images, the chromatogram fragment for peak i is 16 

reconstructed. After processing all peaks, the algorithm rebuilds the entire input chromatogram 17 

using the reconstructed sub-image fragments and then chromatographically splits the 18 

chromatogram again based on the updated data. 19 

As a result, the algorithm produces a chromatogram with dilated peaks, where objects 20 

(substances) are “expanded” or enlarged, which can facilitate further image processing and 21 

structural analysis. 22 
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Algorithm 5. Gas chromatography-inspired dilation algorithm. 

The algorithm presented in the pseudocode performs a dilation operation inspired by the 1 

principles of gas chromatography. For each peak in the input chromatogram with a non-zero 2 

retention time, all its sub-images are separated using the function split_chromatogram. Among 3 

the obtained peaks, the one with the highest retention time and the greatest frequency of 4 

occurrence is selected. 5 

Next, the chosen sub-image is used to modify the remaining sub-images, including those 6 

belonging to peaks with zero retention time. The reconstructed sub-images are then reinserted 7 

back into the original peak. 8 

After completing the operation for all peaks, the entire image is reconstructed and 9 

chromatographically re-divided. The final result is a reconstructed chromatogram after the 10 

dilation operation has been applied. 11 
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Figure 7. Input image and image resulting from applying the dilation algorithm.  

Figure 7 shows the image before the dilation process on the left side. The image on the right 1 

has been processed using the presented dilation algorithm. As can be seen, the contours of 2 

individual objects have been thickened, and gaps in the object outlines have been filled.  3 

It is clear that the quality of the dilation process depends on the parameters described in the 4 

presented algorithm. 5 

The dilation algorithm inspired by gas chromatography effectively expands and enhances 6 

the contours of objects in images, improving their clarity and coherence. Thanks to precise 7 

parameter selection and the use of chromatographic separation of sub-images, it is possible to 8 

eliminate gaps and defects in the structure of objects, which is important for subsequent stages 9 

of image analysis, such as recognition or classification. As a result, we obtain an image with 10 

clearer and more consistent outlines, which increases the efficiency of processing and 11 

interpreting visual data. 12 

4. Classification 13 

Classification of data is one of the fundamental problems in information analysis, involving 14 

the assignment of objects to predefined classes based on their features. In the context of 15 

processing data from chromatography, classification refers to the identification and assignment 16 

of individual retention peaks to specific patterns representing known chemical substances or 17 

groups of compounds. 18 

The proposed classification algorithm is based on the paradigm of pattern matching and 19 

tolerant comparison of numerical features (in this case, retention times). The key assumption is 20 

that differences in retention times between actual data and patterns may result from inevitable 21 

instrumental errors, measurement noise, or slight changes in experimental conditions. 22 

Therefore, the comparison is not absolute but uses a relative tolerance threshold that allows 23 
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flexible matching (Blumberg, 2021; Chromatography: Definition, Working, and Importance in 1 

Various Industries n.d.; Gupta, Biswas 2023; Hage, 1999; Pierce et al., 2021). 2 

The algorithm uses chromatograms represented as sets of numerical values describing peak 3 

positions (retention times) and searches these sets to identify the most probable matches to 4 

predefined patterns. This process is carried out using set operations and formal logical rules, 5 

enabling precise definition of assignment conditions. 6 

Additionally, the algorithm takes into account the identification of peaks common to 7 

different pattern classes, which allows better characterization of ambiguous cases where a given 8 

peak may appear in more than one class. Such analysis enables later filtering of ambiguous 9 

matches or their inclusion in probabilistic classification. 10 

The entire classification procedure is therefore based on three main paradigms: 11 

 Relative comparison – tolerant matching of values considering relative error. 12 

 Collective matching – classification performed based on a set of matches rather than 13 

individual values. 14 

 Pattern structure – classes are represented by reference sets composed of multiple 15 

characteristic points (retention times), not just a single symbol. 16 

This defined approach allows building a classifier resistant to noise and measurement 17 

uncertainties, while respecting the typical data structure of gas chromatography. 18 

The presented classification algorithm is based on the idea of relative matching – a peak 19 

from the input chromatogram is considered a match to the pattern if its retention time falls 20 

within a specified tolerance threshold relative to the reference time. Furthermore, the algorithm 21 

distinguishes between unique and common peaks across pattern classes, enabling more precise 22 

multi-class analysis as well as identification of unmatched peaks, which may indicate the 23 

presence of unknown or contaminating chemical compounds. 24 

This algorithm performs classification in five main stages: peak matching, detection of 25 

common pattern features, assignment of classes to peaks, aggregation of classification results, 26 

and identification of unmatched peaks. Such an approach allows for interpretable and flexible 27 

analysis of chromatographic data, which can be easily adapted to various levels of accuracy by 28 

adjusting the tolerance parameter. 29 
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Algorithm 6. Classification algorithm based on gas chromatography principles.  

The presented classification algorithm is based on comparing the retention times of peaks 1 

from the input chromatogram with the retention times recorded in the class patterns.  2 

This comparison relies on a relative tolerance of the difference, meaning that a given peak is 3 

assigned to a class if its retention time falls within a defined error threshold relative to the 4 

reference value. This approach allows accounting for natural deviations arising from 5 

experimental measurements. 6 

  7 
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The algorithm performs classification in five main steps: (1) matching peaks to patterns,  1 

(2) detecting common retention time features between classes, (3) assigning classes to peaks, 2 

(4) aggregating classification results, and (5) detecting unmatched peaks. Ultimately,  3 

each subimage representing a chemical compound in the image is either classified or marked 4 

as unidentified. 5 

4.1. Initialization (lines 1-6) 6 

From chromatogram ChX, a list of retention times (timesX, line 1) is extracted.  7 

Then, the number of input peaks nX and the number of reference classes nW are determined 8 

(lines 2-3). Matching structures, matches and matched_in_patterns (lines 4-6), are created 9 

to store the results of matches between peaks and patterns. 10 

4.2. Peak matching (lines 7-18) 11 

For each peak i in ChX, its retention time tX is retrieved (line 8). Then it is compared with 12 

each retention time tW in every class k (lines 9-11). The relative difference |tX - tW| / tW is 13 

calculated, and if it is less than or equal to ε, peak i is assigned to class k (lines 12-14).  14 

The match is recorded in both structures (lines 13-14), and the search within the current pattern 15 

ends (break, line 15). 16 

4.3. Detection of common peaks between classes (lines 19-34) 17 

For each pattern k, a structure wspolne_piki_info is created (lines 19-21). For each retention 18 

time t₁  in class k, its value is compared with retention times t₂  from other classes m (lines 22-19 

28). If |t₁  - t₂ | / t₂  ≤ ε, these peaks are considered common (lines 26-27). Identified peaks and 20 

their sources are recorded in the wspolne_piki_info structure (lines 29-33). 21 

4.4. Assignment of Classes to Peaks (lines 35-47) 22 

A structure named peak_assignment is created (line 35). For each peak from ChX,  23 

the algorithm determines the set of classes it belongs to, based on matching with the retention 24 

times in the reference patterns (lines 36-44). The use of unique() (line 45) removes duplicate 25 

class assignments for each peak. 26 

4.5. Aggregation of Results (lines 48-71) 27 

For each class k, the number of matched peaks is calculated (number_matched, line 49), 28 

along with the match percentage (line 51). Then, the matched data is separated into two 29 

categories: 30 

  31 
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 Shared peaks (lines 52-56): these are peaks that match class k, but also appear in other 1 

classes within the tolerance ε – i.e., they are considered ambiguous. 2 

 Unique peaks (lines 57-62): these are peaks that match only class k, and are not identified 3 

as shared with any other class. 4 

Finally, both types of peaks along with summary statistics are stored in the classification 5 

structure (lines 63–71), which will be used for downstream analysis or reporting. 6 

4.6. Detection of unmatched peaks (lines 72-78) 7 

At the end, the algorithm identifies all peaks from ChX that have not been assigned to any 8 

class (lines 73-77). Their retention times and indices are stored in unmatched_times and 9 

unmatched_indices. 10 

The algorithm classifies peaks (chemical substances) based on retention time, taking into 11 

account an error margin ε. It identifies both unique peaks, characteristic for only one class,  12 

and shared peaks common to multiple classes. Thanks to the assignment and classification 13 

structures, further comparative analysis of chromatograms is possible. 14 

5. Classification Results of Images – Case Study 15 

This chapter presents the results of classifier performance tests conducted on two 16 

independent datasets, differing in nature and potential practical application. The first case 17 

concerns the recognition of human leukocyte types based on synthetic images — a task directly 18 

related to medical applications such as automated blood diagnostics and laboratory support. 19 

The second case focuses on the analysis of geometric shapes, which is relevant in industrial 20 

settings, for example in component identification on production lines, sorting of elements,  21 

or quality control. 22 

Both datasets were designed to enable precise evaluation of the classifier's ability to 23 

distinguish classes under both ideal conditions (training set) and noisy conditions (test set).  24 

The results presented below allow assessment of classification effectiveness in real-world 25 

contexts — both in medical and industrial environments. 26 

5.1. Case 1 – Cell Identification 27 

In the conducted study, a synthetic image dataset was used, representing five basic types of 28 

human leukocytes: basophils, eosinophils, neutrophils, monocytes, and lymphocytes. Although 29 

all these cells belong to the hematopoietic system and share similar general structures — 30 

including a nucleus, cytoplasm, and cell membrane — they differ significantly in shape, size, 31 

the number and arrangement of internal structures, as well as the texture of their interiors.  32 

These morphological differences are crucial for their classification process. 33 
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The dataset was entirely synthetically generated using a proprietary function designed to 1 

simulate realistic microscopic images of blood cells. The images are generated with random 2 

parameters responsible for varying shape, size, internal structure, and texture, allowing diverse 3 

samples for each class. This approach enabled the creation of a controlled yet sufficiently varied 4 

dataset, facilitating an effective evaluation of the classifier’s performance. 5 

The generated dataset was divided into two parts: a training set and a test set. The training 6 

set contains ten samples for each cell class, totaling fifty images. These samples were used to 7 

generate reference chromatograms—representative templates for each class—which serve as 8 

the basis for classifying new samples.  9 

 

Figure 8. Synthetic Blood Cells with Labels. 

The test set, which serves as the main element for evaluating the classifier’s performance, 10 

contains thirty independent samples for each of the five classes, totaling one hundred fifty 11 

images. It was generated using a different set of random parameters, ensuring its independence 12 

from the training set and allowing for a realistic assessment of the classifier’s generalization 13 

ability. Each image in the test set has a resolution of 360 × 360 pixels. 14 

This design of the test set enables a controlled yet realistic evaluation of the classification 15 

system’s performance and its robustness against morphological variability in blood cell images. 16 

Table 1. 17 

Classification results for the synthetic blood cell dataset 18 

No. Partition Type – Subimage Size No. theoretical plate (precision) 

1 (30,30) 100 000 0,38 

2 (20,20) 100 000 0,41 

3 (10,10) 100 000 0,47 

4 (5,5) 100 000 0,63 

5 (4,4) 100 000 0,78 

6 (3,3) 100 000 0,74 

7 (4,4) 1000 0,52 

8 (10,10) 1000 0,48 

9 (20,20) 1000 0,64 

10 (30,30) 1000 0,61 

11 (4,4) 100 0,40 

12 (10,10) 100 0,20 

13 (20,20) 100 0,50 

14 (30,30) 100 0,58 

Source: own elaboration. 19 
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Based on the data presented in Table 1 regarding the classification of synthetic blood cells, 1 

a clear relationship can be observed between the size of the subimage, the theoretical number 2 

of bins (shelves), and the classification accuracy (precision). The classifier was designed based 3 

on an analogy to the operation of a gas chromatograph, where the number of bins determines 4 

the level of component separation. In the context of image processing, this translates to the 5 

degree of resolution of features extracted from divided image fragments. 6 

The first six rows of the table (positions 1-6) show classification results for a very high 7 

number of bins (100,000), where the system should achieve the highest separation capability. 8 

Indeed, for large subimages (e.g., 30×30 pixels, row 1), the classification precision is low 9 

(0.38), suggesting that such large fragments are not sensitive enough to local changes in cell 10 

structure. Gradually reducing the subimage size leads to a noticeable increase in precision: 11 

(10×10) yields 0.47 (row 3), (5×5) reaches 0.63 (row 4), and (4×4) achieves 0.78 (row 5), which 12 

is the best result in the entire dataset. Further reduction to (3×3) (row 6) slightly worsens the 13 

result (0.74), possibly due to overfragmentation of features and increased sensitivity to noise. 14 

Rows 7–10 illustrate the classifier’s performance at a medium number of bins (1000).  15 

Here it is clearly visible that precision decreases compared to analogous subimage sizes at 16 

100,000 bins. For example: (4×4), 1000 bins – 0.52 (row 7) vs. 0.78 at 100,000 bins (row 5); 17 

(10×10), 1000 bins – 0.48 (row 8) vs. 0.47 (row 3). Interestingly, for larger subdivisions (20×20 18 

and 30×30), the results for 1,000 bins are higher (rows 9 and 10: 0.64 and 0.61, respectively) 19 

than at 100,000 bins (rows 2 and 1: 0.41 and 0.38). This may indicate that with fewer bins and 20 

larger fragments, the algorithm overfits less and demonstrates better generalization. 21 

The last four rows (11-14) correspond to the lowest number of bins (100), which translates 22 

to the lowest feature extraction resolution. The results are mixed and generally lower.  23 

For example: (4×4), 100 bins – precision 0.40 (row 11), while (10×10) yields only 0.20  24 

(row 12). Interestingly, (20×20) and (30×30) with precision 0.50 and 0.58 (rows 13 and 14) 25 

outperform the results obtained with the same sizes at 100,000 bins (rows 2 and 1). This might 26 

result from the fact that a low number of bins forces greater generalization, which, for large 27 

fragments, works better for some cell classes. 28 

In summary, the most effective classification (row 5: 0.78) was achieved with  29 

an appropriately fine image subdivision (4×4) and a very high number of bins (100,000), 30 

allowing the capture of significant differences between cells of various sizes, shapes,  31 

and nuclear properties. It is also important to emphasize that before classification, each image 32 

was preprocessed by background removal using chromatogram subtraction and extraction of 33 

unique features (peaks). These steps enhanced contrast between structures and enabled the 34 

classifier to better distinguish diagnostically relevant feature. 35 

  36 
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5.2. Case 2 – Shape Analysis 1 

In automation tasks, such as identifying parts on an assembly line, fast and reliable shape 2 

recognition based on images is crucial. Vision systems are used for this purpose, operating with 3 

pre-trained classifiers. To enable effective training and testing of these systems, a special 4 

dataset was prepared containing images of selected geometric shapes, representing different 5 

object classes. 6 

 
Figure 9. Dataset – geometric figures. 

The dataset consists of two parts — training and testing. Both contain images of five classes 7 

of shapes: square, star, heart, circle, and trapezoid. The images are of uniform size and depict  8 

a single shape centered on a solid-colored background. The training set contains perfect 9 

representations of the shapes, without any distortions or noise, while the test set includes 10 

distorted versions — with random shape deviations and positional shifts. This setup allows 11 

testing under conditions similar to real industrial environments, where objects to be recognized 12 

may be shifted, rotated, or slightly deformed. Such a dataset structure enables evaluating the 13 

classifier’s effectiveness not only in ideal conditions but also in scenarios requiring robustness 14 

to disturbances. 15 
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Figure 10. Dataset – distorted geometric figures. 

The dataset used for classification consists of two parts: the training set and the test set. 1 

Both sets contain images depicting geometric shapes belonging to one of five classes: square, 2 

star, heart, circle, and trapezoid. Each shape is placed on a uniform black background.  3 

The images have a fixed resolution of 360×360 pixels, with the shapes always centered in the 4 

frame. The images are stored in RGB mode. 5 

The training set contains 5 images, one for each class. All shapes in this set have perfect, 6 

regular forms — free from geometric distortions or noise. Their shape, proportions, and fill are 7 

clear and representative of their respective classes. These data serve as the basis for training the 8 

classifier, defining a clean and prototypical representation of each category. 9 

The test set consists of 150 images, 30 for each of the five classes. Unlike the training set, 10 

shapes in the test set have undergone geometric deformations — their contours may be jagged, 11 

curved, or shifted. Such distortions aim to replicate realistic conditions where input data may 12 

deviate from the ideal prototype. This allows testing the classifier’s robustness to irregularities 13 

and its ability to generalize. 14 

Each shape in both sets has a similar size — about 200 pixels in the largest dimension.  15 

The colors assigned to the shapes are varied and consistent within each class, but they do not 16 

serve as the basis for classification — they only support visual distinction of examples. 17 

The dataset is constructed to enable effective training and testing of the classifier under 18 

controlled conditions, but with an element of randomness and deformation that allows 19 

evaluation of the model’s overall ability to recognize classes in less-than-ideal scenarios. 20 

  21 
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Table 2. 1 
Classification results involving geometric figures 2 

No. Partition Type – Subimage Size No. theoretical plate (precision) 

1 (60,60) 500 0,71 

2 (40,40) 500 0,48 

3 (20,20) 500 0,31 

4 (10,10) 500 0,22 

5 (60,60) 50 0,84 

6 (40,40) 50 0,64 

7 (20,20) 50 0,29 

8 (10,10) 50 0,23 

9 (60,60) 10 0,63 

10 (40,40) 10 0,37 

11 (20,20) 10 0,20 

12 (10,10) 10 0,20 

Source: own elaboration. 3 

Analysis of the classification results for the second dataset highlights the significant impact 4 

of both the number of theoretical plates and the subimage size on the effectiveness of the 5 

classification algorithm based on an analogy to gas chromatography. In this dataset,  6 

an important feature is that the shapes representing different classes differ in their external form, 7 

while the interior texture remains constant within each class — shape variations mainly result 8 

from geometric distortions. Therefore, it is crucial that the classifier captures interior features 9 

rather than contours. 10 

High number of plates – 500 (rows 1-4). A high number of plates (500) corresponds to  11 

a high separation capability of the algorithm, which means low generalization. This implies that 12 

the algorithm tries to distinguish subtle differences between samples as much as possible.  13 

In cases where variability arises only from shape, and the interior remains identical, such high 14 

separation can lead to overfitting and poor performance on distorted data. 15 

Results confirm this: 16 

 For the largest subimage size (60×60), precision reaches 0.71 (row 1), indicating that 17 

capturing the entire shape (both contour and interior) favors classification. 18 

 However, as the subimage size decreases (down to 10×10), precision drops drastically 19 

(to 0.22 in row 4), showing that too small image fragments do not capture the shape’s 20 

context well and cause errors. 21 

Medium number of plates – 50 (rows 5-8) With 50 plates, the algorithm shows moderate 22 

generalization ability. Classification results are the best in the whole set — the highest precision 23 

(0.84) is achieved for the 60×60 partition (row 5). This can be explained by the fact that larger 24 

fragments allow capturing the whole shape and its contour, while the smaller number of plates 25 

avoids over-separation of minor distortions. 26 

Precision decreases with decreasing subimage size: 27 

 40×40 — 0.64 (row 6), 28 

 20×20 — 0.29 (row 7), 29 

 10×10 — 0.23 (row 8). 30 
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This indicates that smaller subimages reduce the classifier’s effectiveness in dealing with 1 

shape deformation differences, as the global object context is lost. 2 

Low number of plates – 10 (rows 9-12). The lowest number of plates (10) represents very 3 

high generalization. The algorithm tries to capture only the most general fragment features. 4 

Under this setting, with large subimages (60×60), classification is still acceptable  5 

(0.63 in row 9) but then deteriorates sharply: 6 

 40×40 — 0.37 (row 10), 7 

 20×20 and 10×10 — only 0.20 (rows 11 and 12). 8 

Such strong generalization means the algorithm cannot distinguish shapes properly, failing 9 

to separate classes that rely on contour deformation. 10 

Final conclusions: 11 

 The best result (precision 0.84) was obtained for the large subimage (60×60) and medium 12 

number of plates (50) — a compromise between capturing the whole shape and avoiding 13 

overfitting. 14 

 Too small subimages cause loss of shape information, which is crucial here since the 15 

interior of the figure does not change. 16 

 Too high a number of plates leads to overfitting on subtle differences from deformation, 17 

reducing effectiveness. 18 

 Too low a number of plates (e.g., 10) results in poor discrimination between classes. 19 

In this dataset, where class distinction is based on the shape of distorted figures with 20 

preserved interiors, the best results come from medium separation (50 plates) and full or nearly 21 

full coverage of the figure in a single subimage (60×60 or 40×40). 22 

5.3. Summary of image classification results 23 

This chapter presents the results of testing the effectiveness of an image classifier in two 24 

different applications: medical and industrial. 25 

The first case involved recognizing types of human leukocytes based on synthetic 26 

microscopic images. Both the training and test data were generated in a controlled manner, 27 

enabling precise evaluation of the algorithm's performance. The highest classification precision 28 

(0.78) was achieved when the image was divided into very small fragments (4×4 pixels) and 29 

with a very high number of theoretical plates (100,000), which allowed capturing significant 30 

morphological differences between cells. Using too small fragments (e.g., 3×3) led to a decrease 31 

in precision, indicating increased susceptibility to noise. On the other hand, with lower numbers 32 

of plates, larger fragments yielded better results, favoring improved generalization, especially 33 

when the distinguishing features of the cells were more global in nature. 34 

The second case focused on classifying simple geometric shapes in an industrial context, 35 

such as identifying components on an assembly line. The training set contained ideal shapes, 36 

while the test set included their distorted versions to simulate real-world conditions of vision 37 

systems. The best result (precision 0.84) was obtained with large image fragments (60×60 38 
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pixels) and a medium number of theoretical plates (50). This suggests that larger fragments 1 

better capture the overall shape of the object, and moderate separation capacity helps avoid 2 

overfitting. Too fine fragmentation and too low a number of plates significantly reduced 3 

effectiveness because the algorithm lost global context and struggled to correctly identify 4 

classes in the presence of distortions. 5 

In summary, classification effectiveness depends both on the data structure and the 6 

algorithm parameters—particularly the fragment size and the number of theoretical plates. 7 

Good results are achieved when these parameters are matched to the data characteristics:  8 

in medical tasks, fine morphological details are crucial, while in industrial tasks, the overall 9 

object shape is more important. 10 

6. Summary 11 

The article presents an innovative approach to image analysis and classification based on 12 

the method of chromatographic data separation, inspired by classical gas chromatography 13 

principles. The authors treat an image as a mixture of compounds that can be separated 14 

according to their local properties, such as texture, color, and structure, assigning each image 15 

fragment a value corresponding to a retention time. As a result, a chromatogram is obtained—16 

a histogram describing the distribution of these retention times—which serves as a compact 17 

representation of the image content. This representation is then used for classification by 18 

comparing it with reference chromatograms. 19 

The described approach also includes a set of preprocessing operations that improve the 20 

quality of input data and extract significant features. Dominant components like the background 21 

are removed by subtracting chromatograms. Feature extraction involves eliminating common 22 

peaks present in many samples. Additionally, dilation operations help extract contours and 23 

enhance the presence of structures by simulated widening of components in the image. 24 

In the experimental part, the classifier’s effectiveness was tested in two independent 25 

scenarios. The first involved synthetic images of various human leukocyte types. Although 26 

these cells belong to the same biological system, they differ significantly in morphology, 27 

making classification particularly challenging. The second scenario concerned images of 28 

geometric shapes used in industrial contexts, such as part identification on production lines. 29 

Here, shape differences are key, while the texture inside the figures remains constant within 30 

each class. 31 

Classification results show that the algorithm’s performance strongly depends on parameter 32 

choices such as the number of theoretical plates, reflecting the system’s resolving power,  33 

and the size of subregions into which the input image is divided. A high number of plates allows 34 

precise feature separation but may lead to overfitting when data variability is large. Conversely, 35 



542 M. Święcicki  

too few plates cause excessive generalization and loss of the ability to distinguish subtle 1 

differences. Experiments demonstrate that the best results occur with an appropriate balance 2 

between resolution and generalization capability, with optimal parameters varying depending 3 

on the dataset characteristics. 4 

This chromatography-inspired approach can be an effective alternative to classical image 5 

recognition methods, especially in applications where selective extraction of unique features 6 

and robustness to input data disturbances are crucial. 7 
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