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Purpose: The main purpose of the study is to develop and test an image classification algorithm
inspired by the mechanisms of gas chromatography. The research aims to transfer theoretical
concepts from analytical chemistry—such as retention time and the number of theoretical
plates—into the field of image processing. The motivation stems from the need for effective
extraction and differentiation of visual features, particularly in domains where internal
structural differences are subtle or where shape deformation occurs.
Design/methodology/approach: The proposed method treats input images as complex
mixtures of visual components (analogous to chemical substances) and decomposes them into
subimages that are transformed into chromatograms. The algorithm performs feature extraction
using simulated chromatographic separation, followed by background subtraction and peak
comparison. The classification is based on matching the extracted chromatographic peaks
against reference classes. Two types of datasets were used to validate the approach: synthetic
blood cell images (medical domain) and geometric shape figures (industrial domain), both with
controlled distortions. The influence of subimage size and the number of theoretical plates on
classification performance was systematically tested.

Findings: The experiments confirm that the classifier’s effectiveness strongly depends on both
the resolution of the chromatographic decomposition (i.e., the number of plates) and the
subimage size. For blood cells, the best results (precision 0.78) were achieved with a subimage
size of 4x4 and a high number of plates (100,000). In the case of shape classification, the highest
precision (0.84) was obtained for 60x60 subimages and 50 plates. The study shows that
excessive resolution can lead to overfitting, while too little generalization limits the algorithm’s
sensitivity to subtle differences.Research limitations/implications: The approach is tested on
synthetic datasets, which—while offering control over feature variance—may not reflect all the
complexities of real-world data. Future research should include validation on real medical
images and industrial visual inspection systems. Additionally, comparative benchmarks against
conventional machine learning classifiers (e.g., CNNs) could strengthen the results.

Practical implications: The proposed method is applicable in areas requiring robust and
explainable classification of complex image data. In medicine, it can support blood diagnostics
by highlighting morphologically relevant features of leukocytes. In industry, it can enhance
automated inspection systems by enabling recognition of deformed parts without reliance on
purely edge-based or shape-based detection.

Originality/value: The article presents an original and interdisciplinary algorithm that
combines principles of gas chromatography with image analysis. It introduces a novel metaphor
for feature decomposition and demonstrates its applicability in both medical and industrial
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scenarios. This approach expands the set of tools available for interpretable and structure-aware
image classification.

Keywords: gas chromatography, image classification, feature extraction, synthetic dataset,
biomedical imaging.

Article classification: Research paper, Technical paper.

1. Introduction

Image recognition is a key area of research in artificial intelligence, image processing,
and computer vision. The main goal of this process is the identification and classification of
objects, patterns, or scenes depicted in digital images. Systems designed for image recognition
face numerous challenges, such as varying lighting conditions, noise, rotation, scaling,
geometric deformations, and partial occlusion of the objects being analyzed.

Modern approaches to image recognition are primarily based on machine learning
techniques, especially deep learning methods that enable effective extraction and representation
of relevant visual features. These techniques, including convolutional neural networks (CNNs),
allow for automatic learning of hierarchical representations from large datasets. In contexts
where interpretability is crucial, classical feature extraction methods such as HOG (Histogram
of Oriented Gradients) or SIFT (Scale-Invariant Feature Transform) are also applied.

This study introduces an innovative image recognition approach inspired by the
mechanisms of gas chromatography. The proposed method treats image data as mixtures of
visual components that undergo a separation process based on their structural, textural, or color
properties. A key element of the method is the analogy to chromatographic processing—
each image fragment is assigned a so-called retention time, which reflects its “affinity” toward
a stationary phase in a modeled chromatographic column.

This decomposition enables the extraction of features essential for classification while
reducing the influence of interfering components. By applying chromatographic separation
principles, the image is transformed into a chromatogram, which serves as a compact
representation suitable for further analysis, segmentation, or classification.

The proposed method can serve as an alternative or a complement to classical image
processing techniques, especially in applications requiring interpretability, robustness to

deformation, and fine-grained differentiation of internal object structures.
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2. Chromatographic Data Processing Method

The chromatographic data decomposition method, inspired by the principles of gas
chromatography, is based on specific theoretical assumptions. It is assumed that input vectors
submitted for classification represent mixtures of components with an unknown composition.

In the proposed algorithm, it is assumed that the decomposition of the input vector results
in the formation of sub-vectors of equal length, which enables their further analytical
processing. This approach mirrors the separation process observed in classical chromatography

but is adapted to the context of multidimensional data representation and analysis.

2.1. Principle of chromatographic data processing

The core idea of the chromatographic data decomposition method is as follows: the method
consists of several processing stages. In the first stage, the input vector is divided into smaller
sub-vectors, for which the affinity with respect to the stationary phase is calculated.
This parameter determines the migration speed of individual sub-vectors through a modeled
chromatographic column, directly affecting the so-called retention time—that is, the duration
a given sub-vector remains within the column.

After the migration is completed, the vectors exiting the column are counted. Vectors with
identical retention times are treated by the algorithm as equivalent in terms of data
representation. As a result of this process, a chromatographic spectrum is obtained, which
reflects the relationship between the number of vectors sharing the same retention time and
their corresponding migration time.

The chromatographic decomposition algorithm has been described in detail in previous
publications (Swigcicki, 2024). Therefore, this article presents only those components of the

algorithm that are directly relevant to the proposed image processing methods.

2.2. Image Representation

The image is represented as a two-dimensional array, where each element takes a value in
the range from 0 to 255, corresponding to a grayscale representation. According to the
fundamental assumption of the chromatographic data decomposition method, such an array is
interpreted as a mixture of chemical compounds that are subject to further processing.
In the next stage, the image is divided into subregions of equal size, treated as subarrays.
Each of these subarrays is then processed by the algorithm, which computes a corresponding

retention time for each one (Baxes, n.d.; Young et al., 1995).
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Figure 1. Division of the image, which is a mixture, into four subregions that will be treated as four
“substances” for which the retention time will be calculated.

The Blad! Nie mozna odnalez¢ zrodla odwolania. illustrates the process of converting an
image into a chromatogram,
which serves as the core structure used in subsequent stages of image processing.
As demonstrated, the image—interpreted as a mixture—has been divided into one hundred
subregions, each corresponding to an individual “substance” in the context of the
chromatographic data decomposition algorithm. For each of these subregions, a retention time
is calculated. It is important to note that the retention time value is directly dependent on the

distribution of pixel values within the respective subregion.

40 1

35

«

'S

Conceniralion |
o

0 10 20 30 40 0 2 4 6 i3 10
X Relention ime

Figure 2. The process of converting an image into a chromatogram.
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The result of calculating the retention time for each subregion and performing the grouping
process is a chromatogram. The height of individual bars (peaks) in the chromatogram is
determined by the number of subregions that share the same retention time.

2.3. Chromatographic Decomposition Algorithm

Algorithm 1 presents a method for chromatographic data separation inspired by the gas
chromatography technique. The input data for the algorithm is an image P, which in a special
case can be a color image represented as an RGB array. The next input parameters are N1 and
M1, defining the size of the subregions into which the input image will be divided. The last
parameter is a variable corresponding to the resolution in the chromatographic system, called
the number of plates, determined by the length of the chromatographic column. The longer the
chromatographic column, the higher the resolution of the chromatograph. Similarly, in the

presented algorithm, increasing this parameter improves the resolution of the data separation.

Input: P € RM*NxC . // Input image (mixture of substances)

Input: M;,N; e N ; // Dimensions of each sub-image representing a
substance

Imput: ne€ N: // Humber of theoretical plates (discrete retention time
levels)

Output: C = {(75,h;)} CNxN; // Chromatogram as retention times and

peak heights

// Calculate the number of sub-images fitting into P without overlap
. M N
K=|—+| |+
\J“lﬂJ L’\"J

S={S}X,, S.cP, |S|=M xN

// Extract sub-images

3 foreach S; € S do

// Calculate affinity to stationary phase for each substance
4 A; + affinity(5;) ;

// Compute discrete retention time

43

// Measure signal intensity (e.g. average brightness)

a; + measure(.S;)

// Group substances by retention time and sum intensities for
chromatogram peaks

8 return Chromatogram

C = {(r;.h;) | h; > 0}

Algorithm 1. Chromatogram-Based Data Decomposition Algorithm.
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The algorithm begins by processing the input image P, which is represented as a two-
dimensional matrix of dimensions M x N. This image is treated as a mixture of substances,
where each substance corresponds to a fragment of the image — a so-called subregion of size
M; % Nj . Dividing the image into such non-overlapping subregions allows for the analysis of
local properties of the image assigned to individual substances.

For each subregion, an affinity value to the stationary phase is calculated, which is a key
parameter in chromatography. Based on this value, the retention time is determined, describing
how long a given substance “resides” in the chromatographic column. In the context of the
algorithm, the retention time is discretized into one of the predefined points corresponding to
chromatographic “plates,” which ensures the resolution of substance recognition.

Next, substances (subregions) with the same retention time are grouped together.
Such a group is represented as a single peak on the chromatogram, whose height is proportional
to the number of substances belonging to that group. As a result, a histogram of retention times
— a chromatogram — is created, which serves as the basis for further image analysis.

By applying this approach, the algorithm maps chromatographic properties, transferring the
concept of mixture separation to the problem of image segmentation and classification. In this
way, efficient recognition and grouping of image fragments with similar features is possible,

which can support further image recognition tasks, such as classification or object detection.

3. Implementation of selected image processing methods

The image recognition process requires prior execution of appropriate preliminary
operations on the image, which enable more effective extraction of features essential for further
analysis. Therefore, in this work, selected image processing techniques are presented that have
been applied as steps preceding the actual recognition process. These techniques have been
implemented in the context of the developed chromatographic data separation algorithm,
constituting an integral part of the input data preparation for analysis and classification.

In this section, the image processing operations carried out using mechanisms and data
provided by the chromatographic data separation algorithm will be presented. The foundation
of all presented operations is the chromatogram, which serves as a key structure representing
information about the internal organization and composition of the processed image. It can be
stated that the chromatogram functions as the central element in the image analysis process and
is utilized in all the proposed algorithms.

Thanks to the direct linkage between a specific peak in the chromatogram and its
corresponding subregion — treated as a substance in the mixture that the image represents —
selective processing of chosen image fragments is possible. All the presented operations can be

interpreted as filtering actions, analogous to those occurring in actual chromatographic systems.
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Figure 1. Phases of image processing using the chromatographic data separation algorithm.

Figure 1 illustrates the successive stages of the image processing procedure. In the first
processing phase, the input image is divided into smaller subimages, which are interpreted as
substances in a mixture. For each subimage, the level of interaction with the stationary phase is
calculated, leading to the determination of its corresponding retention time.

In the next phase, grouping of substances—that is, subregions of the image—with similar
or identical retention time values is performed. As shown in the presented diagram, multiple
image fragments whose characteristics result in the same retention time can be assigned to
a single peak in the histogram (chromatogram). The figure illustrates a case where different
subimages with the same retention value are assigned to a peak marked with specific numbers,

clearly indicating their similarity within the adopted analysis model(Young et al., 1995).

3.1. Image operations

In the following part of the article, the image preprocessing operations, which constitute
a preparatory stage for the actual recognition process, will be presented. Although the general
properties of these operations are well known and widely described in the literature, this article
focuses on their implementation using the chromatographic data separation method (Young
et al., 1995).

The image processing operations presented later in this work include two main groups.
The first group comprises filtering operations based on chromatogram analysis. This category
includes, among others, the chromatogram subtraction operation and the removal of common
peaks, which enable selective extraction of significant image fragments. The second group
consists of morphological operations, which are a key preparatory step in the image recognition
process. Within this group, the implementation of the dilation operation (object expansion) will
be demonstrated, allowing, among other things, the reconstruction of object structures and

elimination of minor disturbances.
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3.2. Removal of the peak with the highest concentration

The algorithm presents a sequence of operations aimed at eliminating selected substances
from the mixture—represented by an image—based on chromatogram analysis. Specifically,
those components (subimages) that exhibit the highest concentration, corresponding to the
greatest number of occurrences of the same retention time value, are removed. The basis for the
elimination decision is the structure of the chromatogram, which reflects the distribution of
substances within the image. The input arguments of the algorithm are: the processed image,
parameters defining the sizes of the subimages, and the number of chromatographic plates,
which corresponds to the degree of resolution of the applied chromatographic data separation
algorithm.

Input -
« P cRY¥Y: input image (mixture of substances)

o M;, N; € N: dimensions of each subimage
o R Boax € R min and max retention time
e P € N: number of chromatographic plates

Output:
—y - il
o (" Chromatogram as histogram map C' : R - N

o P, Output image with most concentrated retention time substances removed
Assumptions: The image P is partitioned into K non-overlapping subimages:

S ={s1,82,...,5k} where K = {%J : {%J each s; € RMixM

Let AR = w // Grid step of retention time

Ttk G =4 Band+ 7 AR | 5=1,.... // Retention time grid
) 4, ; ; g

Initialize map RT : S — G, histogram C : G — N with zero counts
foreach s; € S do

Compute raw retention time RTeq(s;)

Quantize: RT,(s;) = arg min,eq |RT eal(s:) — 7

Assign: RT[s;] + RT,(s;)

Increment: C[RT,(s;)]  C[RT,(s;)] + 1
end
Let 7* = arg max, g C|r] // Most frequent retention time
Define S’ = {s; € S| RT[s;] #r*} // Remove most concentrated substances
Reconstruct output image Py from subimages in S’

return C', P,

Algorithm 2. Algorithm for Eliminating Dominant Subimages from an Image.

The algorithm presented as the “Chromatographic elimination of the most abundant
substances” is inspired by the process of gas chromatography and constitutes a part of image
processing utilizing a chemical model. Its goal is to remove from the image those fragments
(subregions) that occur most frequently — analogous to removing substances with the highest

concentration from a mixture (Sparkman, 2005; Stilo et al., 2021).
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The elimination algorithm for subregions with the highest concentration is based on the
analogy to the gas chromatography process, in which a mixture of substances is separated in
a column based on differences in retention times. In the first stage, the input image is treated as
a set of non-overlapping subregions (substances), obtained by dividing the pixel matrix into
blocks of specified dimensions. For each such subregion, an affinity value to the stationary
phase is calculated — this parameter translates into a retention time, which is then discretized
to the nearest point on a grid defined by the number of chromatographic plates.

In the next step, a chromatogram is created — a histogram reflecting the distribution of the
number of subregions as a function of retention time. The retention time value for which the
number of corresponding subregions is the highest indicates the dominant “substance” in the
analyzed mixture. Then, all subregions with that retention time value are removed from the
image, which corresponds to eliminating the component with the highest concentration in
classical chromatography.

The result of the algorithm’s operation is a new image, devoid of the most strongly
represented fragments, and an updated chromatogram. This enables targeted removal of
overrepresented features, improving the efficiency of subsequent stages of image recognition
or segmentation. Thus, the algorithm serves as a useful preprocessing tool, reducing
interference caused by dominant structures.

Simulated Chromatogram
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Figure 2. Image and chromatogram before and after removal of the dominant substance (number of
plates =4, sub- image size 5x5).
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Figure 2 presents the effect of the algorithm for eliminating the substances with the highest
concentration. As shown in the illustrations, the image at the bottom has had the fragment
corresponding to the background removed. The second column contains chromatograms: on the
left for the original image, and on the right for the image processed by the described algorithm.

Obraz po usunigciu dominujacej substancji 250 ¢ ] _Simulated Chromatogram
200
150 |
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Figure 3. Image and chromatogram after removal of the dominant substance (number of plates =4,
sub-image size 5x5), obtained by three successive applications of the dominant-peak removal operation
to the original image.

Figure 6 shows the result of repeatedly applying the operation of removing the dominant
peak from the image. As can be seen, this process leads to the separation of the object from the
background, enabling its further analysis using subsequent object recognition operations.

The presented chromatograms indicate that four chromatographic plates were used for the
removal operation. As the number of plates increases, the generalization capability of the
chromatographic algorithm decreases, which results in the need to perform the background

removal process multiple times using the described procedure.

3.3. The operation of subtracting two chromatograms

The chromatogram subtraction operation presented below allows for highlighting the
differences between two sets of image data, which is particularly useful in applications
requiring change detection or background masking(Algorithms for Image Processing and
Computer Vision Second Edition n.d.; Young et al. 1995).

The chromatogram subtraction operation can be used to extract differences between images.
Algorithm 3 presents the successive steps of this procedure. It takes as input the image
partitioning parameters and the number of chromatographic plates, which define the resolution,
as well as a reference chromatogram to be subtracted from the chromatogram of image P.
It is assumed that both chromatograms were generated using identical parameters of the

chromatographic data separation algorithm.
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Assmmptions:
Let P e RM*N be an image representing a mixture of substances.
C'heyp: chromatogram to be subtracted.

s WD B e

Each sub-image has size M; = Ny, no overlaps.
& 1 1 1

Let K = ll . lJ be the number of substances.

My N,
Let L: mumber of theoretical plates (resolution of chromatograph).
Let t.;, and f,..; min and max retention time.
Let £ € [0.1]: allowed difference for peak subtraction.

Lot At = ‘matan

- &

L=l

10 Tnput:

11 |1J|.'L;;’1* P, {IEL!'H!ILFHLIHP;-IIJ! ] TR M T fmaxs €
12 Output:

18 Chromatogram C'h,,,. Modified image P

14 Initialize empty multiset Tp =0 ; // Retention times from image P
15 foreach non-owe rfuj.l!.lrh«y .ﬂrrj.l-rr:rrryr & 'i; P u_f Sz '”] .1";] do

16 Compute affinity to stationary phase: a; «— f(s;);

17 Compute retention time: #; +— Round (£, + @ - (fiae = fiin ). A

18 Add i to T;-,‘

19 Group Tp into peaks: for each ¢ € Tp, let
Chplt)=|{z e Tp:x =1t}

21 Imitialize Ch,; = Chp;
22 foreach (f,.h,) € Ch,, do
23 foreach fJ, e dulu[{ﬁhp] il

24 if |t,—t;| < ¢ then
25 Choy(tp) +— max{Chp(ty) — h,,0);
20 break:

27 Modify image P accordingly: remove peaks in Chp that matched Ch,,, within ;
28 [.v! .pr ~— f} ‘.\’il]l .-1'1I|:|.~=['r|tu1~.-' 1'::]'1‘1'1-|:|1th111!||;.{ €3] !'("I]I!:.l'l'l‘v:l l'rt'nl{n' 11(']141*!1:
ag return Chg,,. P

Algorithm 3. Algorithm for Subtracting Two Chromatograms.

The chromatogram subtraction algorithm performs a comparison and removal of common
peaks between the chromatogram of the input image and the reference chromatogram (ChSub).

Initially, the image P of size M x N is divided into K non-overlapping subregions (of size
M; x N;j ), which are treated as separate “substances.” For each subregion, the retention time
rt; 1s calculated based on its affinity to the stationary phase, and then discretized to the nearest
value t; = RTU;[] + k'ART, where ART = (RT! . — RT);[1)/L and k €{0, 1, ..., L}.

Next, the chromatogram Ch_P is constructed as a set of pairs (¢, n[]), where n[| represents
the number of subregions with retention time ¢. In a loop, each peak y = (¢[], nl]) from the
reference chromatogram ChSub = {(t[], n[])} is examined, and for each #[], the corresponding
ml] in Ch_P is reduced by n(] if |¢[1 — ¢t[]| < & ART. If after subtraction m[] < 0, the peak is

removed from Ch_P. As a result, we obtain a chromatogram C without the common peaks.
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Finally, the modified image P’ is reconstructed by removing from P all subregions whose
retention times are associated with the removed peaks. The algorithm returns the updated
chromatogram C and the image P’, which is ready for subsequent stages of analysis (Schmidt-
Traub, Schulte, Seidel-Morgenstern 2020; Stilo et al., 2021).

The chromatogram subtraction operation can be applied in two key areas of image
processing. The first is object extraction through background removal, particularly in cases
where the complex structure of the background makes simple filtering of the most abundant
subregions ineffective—especially when the extracted object occupies a larger portion of the
image than the background itself. The second area is skeletonization, which involves
representing the shape of an object as a thin contour. This serves as an important stage in the

image recognition process.

&

Figure 4. Background Removal via Chromatogram Subtraction.

Figure 4 presents the result of the chromatogram subtraction operation. The subtracted
chromatogram was generated based on an image containing the background pattern. As shown
on the right, the background has been removed, and the centrally positioned object is now
prepared for further recognition processing.

Skeletonization of the object—its representation as thin contours—plays a key role in the
image recognition process, as it enables shape-based identification. In the context of the
chromatographic data separation method, achieving such an effect is possible through
appropriate processing of the obtained chromatogram: selecting and analyzing peaks
corresponding to the structural boundaries of the object, and subsequently reconstructing the
contour based on the grouped image fragments.
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Figure 5. Skeletonization Resulting from Chromatogram Subtraction.

Figure 5 shows the result of the chromatogram subtraction operation when the reference
chromatogram was generated from images containing filled objects intended for
skeletonization. On the left side of the figure, the extracted contours of these objects are visible.
However, it should be emphasized that the quality of the result is significantly influenced by
the choice of parameters: the number of chromatographic plates in the data separation algorithm
and the value of the € parameter, which defines the allowable deviation between the retention

times of compared peaks.

3.4. Algorithm for Removing Common Peaks Between Chromatograms

In image processing using techniques inspired by gas chromatography, one of the key
operations can be the identification and removal of common features that appear in multiple
images. These features—represented by peaks with similar retention times in chromatograms—
may correspond to background elements, repetitive graphic patterns, or other information
irrelevant to further analysis, such as classification or object recognition.

The common peak removal algorithm enables the extraction of unique components that are
present only in selected images. It operates by comparing chromatograms calculated for a set
of images using identical chromatographic parameters. Common peaks (i.e., those with
retention times differing by less than a specified tolerance threshold) are identified and removed
from the chromatograms of all images, except the one that contains the fewest peaks, which is
treated as the reference point.

As a result, each modified image retains only unique features, which can significantly
enhance the effectiveness of subsequent analysis stages—such as segmentation, pattern

recognition, or machine learning.
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Assume: Chromatograms C = {Chy,...,Chy}, each with same
resolution, known ret. time span; € € [0, 1].

Assume: Each Ch; has peaks as tuples (¢, f, s, p) where ¢: retention
time, f: frequency, s: substance image, p: position.

Input : Chromatograms C, parameter «.

Output : Modified chromatograms C’

if all Ch; have no peaks then
return C’, G =0
k + argmin; | Peaks(Ch;)|;
Let C'hy be chromatogram with fewest peaks;
C' + C;
foreach i € {1,... ,N},7 # k do
foreach peak p; € Peaks(Ch;) do
if dpy. € Peaks(Chy) : |t(p;) — t(pr)| < £ then
‘ remove p; and its (f, s, p) from Ch!;
end

[y
O 00~ S U W=

o
=

end

=
b2

end

Let P+ |JY | Peaks(CH});
Initialize G' < ;

while P # () do

(R R Y
[ VO JG]

16 pick any p € P;

17 | Cp+{qe P:|t(q) —t(p)| <k
18 | tg ¢ oy L e, 1)

19 hg — qucp f(qj

20 G+ GU{(tg,hg)}:

21 P+ P\ Cp;

22 end

23 return ('

Algorithm 4. Algorithm for Removing Common Peaks.

The algorithm is designed for processing multiple images that have undergone
chromatographic separation, aiming to remove common features—i.e., peaks with similar
retention times—from most chromatograms. This approach can be useful in extracting unique
object features from images or in classification tasks where only differences between objects
matter.

The algorithm input consists of a set of images P; , P, , ..., P N, each of which has
an associated chromatogram Ch; , Ch, , ..., Ch n created based on dividing the image into
subregions representing substances (i.e., image fragments). All chromatograms are generated
using identical chromatographic resolution parameters—that is, the same number of shelves
and the same minimum and maximum retention time values(Hage 1999; Martens et al., 2017,
Robards, Ryan, 2021).
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The first step of the algorithm is to identify the chromatogram with the smallest number of
peaks, which is treated as the reference. Then, for each of the remaining chromatograms,
its peaks are compared with the peaks of the reference chromatogram. If the difference between
the retention times of the peaks does not exceed the given tolerance value epsilon (g), these
peaks are considered common and removed. In the final step, the chromatograms are
recalculated by regrouping the substances based on their new retention times and contents.

The algorithm returns modified chromatograms along with their corresponding images,
from which common information has been removed—enabling further processing focused

solely on the unique features of each image.

Figure 6. Input image and image resulting from the application of the common peak removal algorithm.

Figure 8 shows the result of the operation involving the removal of common peaks between

chromatograms. As can be seen, this operation produced object contours, visible in the image
on the left. Naturally, the quality of the obtained skeletons of individual objects is influenced
by several parameters.

The parameters that significantly influence the quality of the obtained contours (skeletons)

are primarily:

— The number of chromatographic shelves, which corresponds to the resolution of
separation — the higher this number, the more precise the differentiation between
substances (image fragments), but it can also lead to excessive data fragmentation.

—  The retention time range — the minimum and maximum retention times define the limits
within which peaks can be located; selecting these values appropriately helps to better
separate important features.

— The value of the epsilon (g) parameter — the tolerance for retention time differences
when comparing peaks; too large a value may result in the removal of unique features,
while too small a value may leave common information intact.

— The selection of these parameters should be tailored to the characteristics of the
analyzed images and the processing goal (e.g., classification, segmentation, feature

extraction).
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3.5. Dilation algorithm

Dilation is one of the basic morphological operations used in image processing, mainly for
binary images, although it can also be extended to grayscale images. It involves “expanding”
objects by adding pixels to their boundaries. As a result, objects become larger, and small gaps,
breaks, or irregularities in their structure are filled (Young et al., 1995).

The dilation algorithm processes a single input chromatogram, Chlnput, which contains
a set of peaks and associated sub-image fragments representing substances. For each peak
1 with a non-zero retention time, chromatographic separation of the corresponding sub-image
fragment is performed using the function split chromatogram, applying appropriate parameters
such as sub-image dimensions, number of shelves, and minimum and maximum retention times.

Among the separation results, the sub-image fragment corresponding to the peak with the
highest retention time and greatest frequency of occurrence is selected. Then, all other sub-
image fragments in the chromatogram—including those related to peaks with zero retention
time—are modified relative to the selected fragment (Giddings, 2017; Gupta, Biswas, 2023;
Mondello et al., 2008).

Based on these modified sub-images, the chromatogram fragment for peak 1 is
reconstructed. After processing all peaks, the algorithm rebuilds the entire input chromatogram
using the reconstructed sub-image fragments and then chromatographically splits the
chromatogram again based on the updated data.

As a result, the algorithm produces a chromatogram with dilated peaks, where objects
(substances) are “expanded” or enlarged, which can facilitate further image processing and
structural analysis.
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Assumptions: Let Chy,,,, be a chromatogram composed of peaks
P = (o p)
Each peak p; contains:;
Retention time ; € Rp:
Frequeney f; € M: )
St of .“-'||_|!ri]|_|_ill_:"l":‘- ."1:‘ = {-“l~ .\:;'.}',
Set of positions L; = {l1..... Ik }:
Retention times are quantized as Af =

rI||---:4i ~t

Malais 1
Fach time ¢ is rounded to the nearest multiple of At:
Function split_chromatogram(subimage, M. N, n_slots, fn. fnae) returns a
chromatogram;

Function reconstruct_image(chromatogram) reconstructs a sublmage;

Input : Chromatogram f'."a,r,”,,,,. parameters
'.Il‘r]' =1|".|. + Mslotss 'r.'ur'u' jrrrlu" '\ 'Ir.!." :II".'.:." M slotsd, 'fllln;rlj' 'fhuu".:.'
Output : Dilated chromatogram Chg,

1 foreach peak p; € Chyppe with £; =0 do

2 foreach subimage s € 5S; do

3 CH?2 + spht_chromatogram(s. Mz, Na. nigas2. tmin2. Tmar2):

4 Select peak p* € CH2 such that p* has the maximum retention time and
highest frequency;

5 Let s™f € p* be the representative subimage:

[F foreach peak p e CH2 do

T foreach subimage 5" € p do

kS \» |_ Modify s using dilation based on s™/:

a S e reconstruct Jmagze( O H2):

10 Replace s in S; with s™":

11 Fyahar 4 reconstruct image(Chp, )
12 Choy + split_chromatogram( Pygbar. M1, N1, aots, tmin, tmaz);

Algorithm 5. Gas chromatography-inspired dilation algorithm.

The algorithm presented in the pseudocode performs a dilation operation inspired by the
principles of gas chromatography. For each peak in the input chromatogram with a non-zero
retention time, all its sub-images are separated using the function split chromatogram. Among
the obtained peaks, the one with the highest retention time and the greatest frequency of
occurrence is selected.

Next, the chosen sub-image is used to modify the remaining sub-images, including those
belonging to peaks with zero retention time. The reconstructed sub-images are then reinserted
back into the original peak.

After completing the operation for all peaks, the entire image is reconstructed and
chromatographically re-divided. The final result is a reconstructed chromatogram after the

dilation operation has been applied.
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Figure 7. Input image and image resulting from applying the dilation algorithm.

Figure 7 shows the image before the dilation process on the left side. The image on the right
has been processed using the presented dilation algorithm. As can be seen, the contours of
individual objects have been thickened, and gaps in the object outlines have been filled.
It is clear that the quality of the dilation process depends on the parameters described in the
presented algorithm.

The dilation algorithm inspired by gas chromatography effectively expands and enhances
the contours of objects in images, improving their clarity and coherence. Thanks to precise
parameter selection and the use of chromatographic separation of sub-images, it is possible to
eliminate gaps and defects in the structure of objects, which is important for subsequent stages
of image analysis, such as recognition or classification. As a result, we obtain an image with
clearer and more consistent outlines, which increases the efficiency of processing and

interpreting visual data.

4. Classification

Classification of data is one of the fundamental problems in information analysis, involving
the assignment of objects to predefined classes based on their features. In the context of
processing data from chromatography, classification refers to the identification and assignment
of individual retention peaks to specific patterns representing known chemical substances or
groups of compounds.

The proposed classification algorithm is based on the paradigm of pattern matching and
tolerant comparison of numerical features (in this case, retention times). The key assumption is
that differences in retention times between actual data and patterns may result from inevitable
instrumental errors, measurement noise, or slight changes in experimental conditions.

Therefore, the comparison is not absolute but uses a relative tolerance threshold that allows
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flexible matching (Blumberg, 2021; Chromatography: Definition, Working, and Importance in
Various Industries n.d.; Gupta, Biswas 2023; Hage, 1999; Pierce et al., 2021).

The algorithm uses chromatograms represented as sets of numerical values describing peak
positions (retention times) and searches these sets to identify the most probable matches to
predefined patterns. This process is carried out using set operations and formal logical rules,
enabling precise definition of assignment conditions.

Additionally, the algorithm takes into account the identification of peaks common to
different pattern classes, which allows better characterization of ambiguous cases where a given
peak may appear in more than one class. Such analysis enables later filtering of ambiguous
matches or their inclusion in probabilistic classification.

The entire classification procedure is therefore based on three main paradigms:

— Relative comparison — tolerant matching of values considering relative error.

— Collective matching — classification performed based on a set of matches rather than

individual values.

— Pattern structure — classes are represented by reference sets composed of multiple

characteristic points (retention times), not just a single symbol.

This defined approach allows building a classifier resistant to noise and measurement
uncertainties, while respecting the typical data structure of gas chromatography.

The presented classification algorithm is based on the idea of relative matching — a peak
from the input chromatogram is considered a match to the pattern if its retention time falls
within a specified tolerance threshold relative to the reference time. Furthermore, the algorithm
distinguishes between unique and common peaks across pattern classes, enabling more precise
multi-class analysis as well as identification of unmatched peaks, which may indicate the
presence of unknown or contaminating chemical compounds.

This algorithm performs classification in five main stages: peak matching, detection of
common pattern features, assignment of classes to peaks, aggregation of classification results,
and identification of unmatched peaks. Such an approach allows for interpretable and flexible
analysis of chromatographic data, which can be easily adapted to various levels of accuracy by

adjusting the tolerance parameter.
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assumptions: Let Chy be the input chromatogram with a finite set of retention
times T = {t;,%9, ..., 1, } and W = {W, Wy, ..., W, } be the set of
reference chromatograms (templates), where W}, has its own
retention time set Ty. A peak ; € Ty matches t; € T}, if
L— < g, where £ is a matching threshold.

input : (hlomatonram Chy, set of reference chromatograms
W = {Wi, Wa,...,Wp}, tolerance ¢

output : classification result, unmatched peaks, and peak-to-class
assignments

foreach t; € Tx do
initialize M; = (;
foreach W, € W do
toreach t; € T} do
if L‘ Yl < ¢ then
add k to M;;
mark £; in Tk as matched;
break;
end
end

end

end
foreach W, € W do
initialize Sp. = 0, U = Tj;
foreach t; € T} do
foreach Wy e W1 # k clo
if 3t € T) such that L=l
add t; to Si (shared poaks]
remove t; from U, (unique peaks);

|tj—tm|
< £ then

end
end
end

end
foreach ¢; € T do
assign t; to class set C; = M;;
end
foreach W, € W do
let I, = matched peaks in T};
compute pp = 1Dl )" - 100;
store for class !\, 111.1111bel of matched peaks, shared and umque peaks, and py;
end
foreach ¢; € Ty do
if C; =0 then

| add ¢; to list of unmatched peaks;

end
end

Algorithm 6. Classification algorithm based on gas chromatography principles.

The presented classification algorithm is based on comparing the retention times of peaks

from the input chromatogram with the retention times recorded in the class patterns.

This comparison relies on a relative tolerance of the difference, meaning that a given peak is

assigned to a class if its retention time falls within a defined error threshold relative to the

reference value. This approach allows accounting for natural deviations arising from

experimental measurements.
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The algorithm performs classification in five main steps: (1) matching peaks to patterns,
(2) detecting common retention time features between classes, (3) assigning classes to peaks,
(4) aggregating classification results, and (5) detecting unmatched peaks. Ultimately,
each subimage representing a chemical compound in the image is either classified or marked
as unidentified.

4.1. Initialization (lines 1-6)

From chromatogram ChX, a list of retention times (timesX, line 1) is extracted.
Then, the number of input peaks nX and the number of reference classes nW are determined
(lines 2-3). Matching structures, matches and matched in patterns (lines 4-6), are created

to store the results of matches between peaks and patterns.

4.2. Peak matching (lines 7-18)

For each peak i in CAX, its retention time £X is retrieved (line 8). Then it is compared with
each retention time ¢# in every class k (lines 9-11). The relative difference [tX - tW| / tW is
calculated, and if it is less than or equal to €, peak i is assigned to class k£ (lines 12-14).
The match is recorded in both structures (lines 13-14), and the search within the current pattern
ends (break, line 15).

4.3. Detection of common peaks between classes (lines 19-34)

For each pattern k, a structure wspolne piki_info is created (lines 19-21). For each retention
time t; 1in class k, its value is compared with retention times t, from other classes m (lines 22-
28). If |ty -ty |/ t; <g, these peaks are considered common (lines 26-27). Identified peaks and

their sources are recorded in the wspolne piki info structure (lines 29-33).

4.4. Assignment of Classes to Peaks (lines 35-47)

A structure named peak assignment is created (line 35). For each peak from ChX,
the algorithm determines the set of classes it belongs to, based on matching with the retention
times in the reference patterns (lines 36-44). The use of unique() (line 45) removes duplicate
class assignments for each peak.

4.5. Aggregation of Results (lines 48-71)

For each class k, the number of matched peaks is calculated (number matched, line 49),
along with the match percentage (line 51). Then, the matched data is separated into two

categories:
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— Shared peaks (lines 52-56): these are peaks that match class k, but also appear in other
classes within the tolerance € — i.e., they are considered ambiguous.

— Unique peaks (lines 57-62): these are peaks that match only class k, and are not identified
as shared with any other class.

Finally, both types of peaks along with summary statistics are stored in the classification

structure (lines 63—71), which will be used for downstream analysis or reporting.

4.6. Detection of unmatched peaks (lines 72-78)

At the end, the algorithm identifies all peaks from ChX that have not been assigned to any
class (lines 73-77). Their retention times and indices are stored in unmatched times and
unmatched indices.

The algorithm classifies peaks (chemical substances) based on retention time, taking into
account an error margin €. It identifies both unique peaks, characteristic for only one class,
and shared peaks common to multiple classes. Thanks to the assignment and classification

structures, further comparative analysis of chromatograms is possible.

5. Classification Results of Images — Case Study

This chapter presents the results of classifier performance tests conducted on two
independent datasets, differing in nature and potential practical application. The first case
concerns the recognition of human leukocyte types based on synthetic images — a task directly
related to medical applications such as automated blood diagnostics and laboratory support.
The second case focuses on the analysis of geometric shapes, which is relevant in industrial
settings, for example in component identification on production lines, sorting of elements,
or quality control.

Both datasets were designed to enable precise evaluation of the classifier's ability to
distinguish classes under both ideal conditions (training set) and noisy conditions (test set).
The results presented below allow assessment of classification effectiveness in real-world

contexts — both in medical and industrial environments.

5.1. Case 1 — Cell Identification

In the conducted study, a synthetic image dataset was used, representing five basic types of
human leukocytes: basophils, eosinophils, neutrophils, monocytes, and lymphocytes. Although
all these cells belong to the hematopoietic system and share similar general structures —
including a nucleus, cytoplasm, and cell membrane — they differ significantly in shape, size,
the number and arrangement of internal structures, as well as the texture of their interiors.

These morphological differences are crucial for their classification process.
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The dataset was entirely synthetically generated using a proprietary function designed to
simulate realistic microscopic images of blood cells. The images are generated with random
parameters responsible for varying shape, size, internal structure, and texture, allowing diverse
samples for each class. This approach enabled the creation of a controlled yet sufficiently varied
dataset, facilitating an effective evaluation of the classifier’s performance.

The generated dataset was divided into two parts: a training set and a test set. The training
set contains ten samples for each cell class, totaling fifty images. These samples were used to
generate reference chromatograms—representative templates for each class—which serve as

the basis for classifying new samples.

Synthetic Blood Cells with Labels

Basoohil Ecsinophil o necte Heutraphil Lyin phocyie

Figure 8. Synthetic Blood Cells with Labels.

The test set, which serves as the main element for evaluating the classifier’s performance,
contains thirty independent samples for each of the five classes, totaling one hundred fifty
images. It was generated using a different set of random parameters, ensuring its independence
from the training set and allowing for a realistic assessment of the classifier’s generalization
ability. Each image in the test set has a resolution of 360 x 360 pixels.

This design of the test set enables a controlled yet realistic evaluation of the classification

system’s performance and its robustness against morphological variability in blood cell images.

Table 1.
Classification results for the synthetic blood cell dataset
No. Partition Type — Subimage Size No. theoretical plate (precision)

1 (30,30) 100 000 0,38
2 (20,20) 100 000 0,41
3 (10,10) 100 000 0,47
4 (5,5) 100 000 0,63
5 (4,4 100 000 0,78
6 (3,3) 100 000 0,74
7 (4,4 1000 0,52
8 (10,10) 1000 0,48
9 (20,20) 1000 0,64
10 (30,30) 1000 0,61
11 (4,4 100 0,40
12 (10,10) 100 0,20
13 (20,20) 100 0,50
14 (30,30) 100 0,58

Source: own elaboration.
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Based on the data presented in Table 1 regarding the classification of synthetic blood cells,
a clear relationship can be observed between the size of the subimage, the theoretical number
of bins (shelves), and the classification accuracy (precision). The classifier was designed based
on an analogy to the operation of a gas chromatograph, where the number of bins determines
the level of component separation. In the context of image processing, this translates to the
degree of resolution of features extracted from divided image fragments.

The first six rows of the table (positions 1-6) show classification results for a very high
number of bins (100,000), where the system should achieve the highest separation capability.
Indeed, for large subimages (e.g., 30%30 pixels, row 1), the classification precision is low
(0.38), suggesting that such large fragments are not sensitive enough to local changes in cell
structure. Gradually reducing the subimage size leads to a noticeable increase in precision:
(10x10) yields 0.47 (row 3), (5%5) reaches 0.63 (row 4), and (4%x4) achieves 0.78 (row 5), which
is the best result in the entire dataset. Further reduction to (3x3) (row 6) slightly worsens the
result (0.74), possibly due to overfragmentation of features and increased sensitivity to noise.

Rows 7-10 illustrate the classifier’s performance at a medium number of bins (1000).
Here it is clearly visible that precision decreases compared to analogous subimage sizes at
100,000 bins. For example: (4x4), 1000 bins — 0.52 (row 7) vs. 0.78 at 100,000 bins (row 5);
(10x10), 1000 bins — 0.48 (row 8) vs. 0.47 (row 3). Interestingly, for larger subdivisions (20x20
and 30x30), the results for 1,000 bins are higher (rows 9 and 10: 0.64 and 0.61, respectively)
than at 100,000 bins (rows 2 and 1: 0.41 and 0.38). This may indicate that with fewer bins and
larger fragments, the algorithm overfits less and demonstrates better generalization.

The last four rows (11-14) correspond to the lowest number of bins (100), which translates
to the lowest feature extraction resolution. The results are mixed and generally lower.
For example: (4x4), 100 bins — precision 0.40 (row 11), while (10x10) yields only 0.20
(row 12). Interestingly, (20%20) and (30%30) with precision 0.50 and 0.58 (rows 13 and 14)
outperform the results obtained with the same sizes at 100,000 bins (rows 2 and 1). This might
result from the fact that a low number of bins forces greater generalization, which, for large
fragments, works better for some cell classes.

In summary, the most effective classification (row 5: 0.78) was achieved with
an appropriately fine image subdivision (4x4) and a very high number of bins (100,000),
allowing the capture of significant differences between cells of various sizes, shapes,
and nuclear properties. It is also important to emphasize that before classification, each image
was preprocessed by background removal using chromatogram subtraction and extraction of
unique features (peaks). These steps enhanced contrast between structures and enabled the

classifier to better distinguish diagnostically relevant feature.
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5.2. Case 2 — Shape Analysis

In automation tasks, such as identifying parts on an assembly line, fast and reliable shape
recognition based on images is crucial. Vision systems are used for this purpose, operating with
pre-trained classifiers. To enable effective training and testing of these systems, a special
dataset was prepared containing images of selected geometric shapes, representing different

object classes.

Figure 9. Dataset — geometric figures.

The dataset consists of two parts — training and testing. Both contain images of five classes
of shapes: square, star, heart, circle, and trapezoid. The images are of uniform size and depict
a single shape centered on a solid-colored background. The training set contains perfect
representations of the shapes, without any distortions or noise, while the test set includes
distorted versions — with random shape deviations and positional shifts. This setup allows
testing under conditions similar to real industrial environments, where objects to be recognized
may be shifted, rotated, or slightly deformed. Such a dataset structure enables evaluating the
classifier’s effectiveness not only in ideal conditions but also in scenarios requiring robustness

to disturbances.
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Figure 10. Dataset — distorted geometric figures.

The dataset used for classification consists of two parts: the training set and the test set.
Both sets contain images depicting geometric shapes belonging to one of five classes: square,
star, heart, circle, and trapezoid. Each shape is placed on a uniform black background.
The images have a fixed resolution of 360x360 pixels, with the shapes always centered in the
frame. The images are stored in RGB mode.

The training set contains 5 images, one for each class. All shapes in this set have perfect,
regular forms — free from geometric distortions or noise. Their shape, proportions, and fill are
clear and representative of their respective classes. These data serve as the basis for training the
classifier, defining a clean and prototypical representation of each category.

The test set consists of 150 images, 30 for each of the five classes. Unlike the training set,
shapes in the test set have undergone geometric deformations — their contours may be jagged,
curved, or shifted. Such distortions aim to replicate realistic conditions where input data may
deviate from the ideal prototype. This allows testing the classifier’s robustness to irregularities
and its ability to generalize.

Each shape in both sets has a similar size — about 200 pixels in the largest dimension.
The colors assigned to the shapes are varied and consistent within each class, but they do not
serve as the basis for classification — they only support visual distinction of examples.

The dataset is constructed to enable effective training and testing of the classifier under
controlled conditions, but with an element of randomness and deformation that allows

evaluation of the model’s overall ability to recognize classes in less-than-ideal scenarios.
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Table 2.
Classification results involving geometric figures
No. | Partition Type — Subimage Size No. theoretical plate (precision)

1 (60,60) 500 0,71
2 (40,40) 500 0,48
3 (20,20) 500 0,31
4 (10,10) 500 0,22
5 (60,60) 50 0,84
6 (40,40) 50 0,64
7 (20,20) 50 0,29
8 (10,10) 50 0,23
9 (60,60) 10 0,63
10 (40,40) 10 0,37
11 (20,20) 10 0,20
12 (10,10) 10 0,20

Source: own elaboration.

Analysis of the classification results for the second dataset highlights the significant impact
of both the number of theoretical plates and the subimage size on the effectiveness of the
classification algorithm based on an analogy to gas chromatography. In this dataset,
an important feature is that the shapes representing different classes differ in their external form,
while the interior texture remains constant within each class — shape variations mainly result
from geometric distortions. Therefore, it is crucial that the classifier captures interior features
rather than contours.

High number of plates — 500 (rows 1-4). A high number of plates (500) corresponds to
a high separation capability of the algorithm, which means low generalization. This implies that
the algorithm tries to distinguish subtle differences between samples as much as possible.
In cases where variability arises only from shape, and the interior remains identical, such high
separation can lead to overfitting and poor performance on distorted data.

Results confirm this:

— For the largest subimage size (60%60), precision reaches 0.71 (row 1), indicating that

capturing the entire shape (both contour and interior) favors classification.

— However, as the subimage size decreases (down to 10x10), precision drops drastically

(to 0.22 in row 4), showing that too small image fragments do not capture the shape’s
context well and cause errors.

Medium number of plates — 50 (rows 5-8) With 50 plates, the algorithm shows moderate
generalization ability. Classification results are the best in the whole set — the highest precision
(0.84) is achieved for the 60x60 partition (row 5). This can be explained by the fact that larger
fragments allow capturing the whole shape and its contour, while the smaller number of plates
avoids over-separation of minor distortions.

Precision decreases with decreasing subimage size:

- 40%x40 — 0.64 (row 6),

- 20%20 — 0.29 (row 7),

- 10x10 — 0.23 (row 8).
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This indicates that smaller subimages reduce the classifier’s effectiveness in dealing with
shape deformation differences, as the global object context is lost.

Low number of plates — 10 (rows 9-12). The lowest number of plates (10) represents very
high generalization. The algorithm tries to capture only the most general fragment features.
Under this setting, with large subimages (60%x60), classification is still acceptable
(0.63 in row 9) but then deteriorates sharply:

- 40%x40 — 0.37 (row 10),

- 20%20 and 10x10 — only 0.20 (rows 11 and 12).

Such strong generalization means the algorithm cannot distinguish shapes properly, failing
to separate classes that rely on contour deformation.

Final conclusions:

— The best result (precision 0.84) was obtained for the large subimage (60x60) and medium
number of plates (50) — a compromise between capturing the whole shape and avoiding
overfitting.

- Too small subimages cause loss of shape information, which is crucial here since the
interior of the figure does not change.

- Too high a number of plates leads to overfitting on subtle differences from deformation,
reducing effectiveness.

- Too low a number of plates (e.g., 10) results in poor discrimination between classes.

In this dataset, where class distinction is based on the shape of distorted figures with

preserved interiors, the best results come from medium separation (50 plates) and full or nearly
full coverage of the figure in a single subimage (60%60 or 40x40).

5.3. Summary of image classification results

This chapter presents the results of testing the effectiveness of an image classifier in two
different applications: medical and industrial.

The first case involved recognizing types of human leukocytes based on synthetic
microscopic images. Both the training and test data were generated in a controlled manner,
enabling precise evaluation of the algorithm's performance. The highest classification precision
(0.78) was achieved when the image was divided into very small fragments (4x4 pixels) and
with a very high number of theoretical plates (100,000), which allowed capturing significant
morphological differences between cells. Using too small fragments (e.g., 3x3) led to a decrease
in precision, indicating increased susceptibility to noise. On the other hand, with lower numbers
of plates, larger fragments yielded better results, favoring improved generalization, especially
when the distinguishing features of the cells were more global in nature.

The second case focused on classifying simple geometric shapes in an industrial context,
such as identifying components on an assembly line. The training set contained ideal shapes,
while the test set included their distorted versions to simulate real-world conditions of vision

systems. The best result (precision 0.84) was obtained with large image fragments (60x60
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pixels) and a medium number of theoretical plates (50). This suggests that larger fragments
better capture the overall shape of the object, and moderate separation capacity helps avoid
overfitting. Too fine fragmentation and too low a number of plates significantly reduced
effectiveness because the algorithm lost global context and struggled to correctly identify
classes in the presence of distortions.

In summary, classification effectiveness depends both on the data structure and the
algorithm parameters—particularly the fragment size and the number of theoretical plates.
Good results are achieved when these parameters are matched to the data characteristics:
in medical tasks, fine morphological details are crucial, while in industrial tasks, the overall

object shape is more important.

6. Summary

The article presents an innovative approach to image analysis and classification based on
the method of chromatographic data separation, inspired by classical gas chromatography
principles. The authors treat an image as a mixture of compounds that can be separated
according to their local properties, such as texture, color, and structure, assigning each image
fragment a value corresponding to a retention time. As a result, a chromatogram is obtained—
a histogram describing the distribution of these retention times—which serves as a compact
representation of the image content. This representation is then used for classification by
comparing it with reference chromatograms.

The described approach also includes a set of preprocessing operations that improve the
quality of input data and extract significant features. Dominant components like the background
are removed by subtracting chromatograms. Feature extraction involves eliminating common
peaks present in many samples. Additionally, dilation operations help extract contours and
enhance the presence of structures by simulated widening of components in the image.

In the experimental part, the classifier’s effectiveness was tested in two independent
scenarios. The first involved synthetic images of various human leukocyte types. Although
these cells belong to the same biological system, they differ significantly in morphology,
making classification particularly challenging. The second scenario concerned images of
geometric shapes used in industrial contexts, such as part identification on production lines.
Here, shape differences are key, while the texture inside the figures remains constant within
each class.

Classification results show that the algorithm’s performance strongly depends on parameter
choices such as the number of theoretical plates, reflecting the system’s resolving power,
and the size of subregions into which the input image is divided. A high number of plates allows

precise feature separation but may lead to overfitting when data variability is large. Conversely,
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too few plates cause excessive generalization and loss of the ability to distinguish subtle

differences. Experiments demonstrate that the best results occur with an appropriate balance

between resolution and generalization capability, with optimal parameters varying depending

on the dataset characteristics.

This chromatography-inspired approach can be an effective alternative to classical image

recognition methods, especially in applications where selective extraction of unique features

and robustness to input data disturbances are crucial.
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