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1. Introduction  1 

The European energy market, as coordinated by the European Network of Transmission 2 

System Operators for Electricity (ENTSO-E)1, continues to evolve rapidly in response to the 3 

energy transition and growing integration of RES. According to ENTSO-E (Summer Outlook, 4 

2025), the European power system is expected to maintain overall adequacy, with no systemic 5 

risks identified across most of the continent. However, specific vulnerabilities remain in 6 

isolated or weakly interconnected, where planned generation outages and limited import 7 

capacities pose challenges. The report highlights a significant expansion of over 90 GW of solar 8 

PV capacity since the previous summer, contributing to periods of renewable overproduction. 9 

While battery storage capacity has doubled to 25 GW, ENTSO-E emphasizes the increasing 10 

importance of flexibility solutions to manage energy mix and ensure system stability (Summer 11 

Outlook, 2025). 12 

In Poland, developments in the electricity sector are closely aligned with ENTSO-E’s 13 

broader objectives, particularly in integrating renewable energy. According to ENTSO-E’s 14 

analysis (Summer Outlook, 2025), Poland is expected to ensure system adequacy during the 15 

summer months, supported by increased PV capacity and growing interconnection capabilities. 16 

However, Polish grid continues to face challenges related to balancing renewables and securing 17 

flexibility, especially during peak demand or low generation periods. Poland is also actively 18 

participating in ENTSO-E’s initiatives to modernize the European electricity market, including 19 

the Offshore Roadmap (Offshore Roadmap, 2025), which outlines regulatory and technical 20 

frameworks for integrating offshore wind and cross-border infrastructure. While Poland’s 21 

offshore wind sector is still in early stages compared to countries like Germany or Denmark, 22 

the country is already working on future integration through grid upgrades and regulatory 23 

alignment. These efforts are crucial as Poland aims to reduce its reliance on coal and transition 24 

toward a more sustainable and interconnected energy system. 25 

As of 2025, Poland's installed generation capacity stands at approximately 64 GW,  26 

with RES accounting for nearly 44% of it (PSE, 2024). Among renewables, wind power plays 27 

a significant role, with over 10 GW of installed capacity from onshore wind farms, primarily 28 

located in the northern and central regions of the country. To support the green transition goals, 29 

Poland is investing in its transmission infrastructure. The Transmission Grid Development Plan 30 

2025-2034 (PSE, 2023) is aimed at integrating RES, including wind, and enhancing north-south 31 

energy flow through a new HVDC line, strengthening connection with the Baltic countries. 32 

These efforts are crucial for ensuring grid stability and meeting the country’s decarbonization 33 

goals under the EU’s “Fit for 55” package. 34 
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On top of RES increasing installed capacity Poland’s nuclear power program is a key pillar 1 

of its long-term energy strategy. It is designed not only to diversify the energy mix but also to 2 

complement the growing share of RES. The first large-scale nuclear power plant is expected to 3 

begin operation in the late 2030s, with additional units planned to follow. 4 

It is important to emphasize that the nuclear power plants in Poland are intended to operate 5 

in a flexible manner (Sawicki, Bury, 2025), adjusting their output to prevailing market 6 

conditions, including the real-time generation levels of RES within the power system.  7 

In the context of integrating nuclear power with RES, it is essential to accurately forecast the 8 

generation of PV and wind energy. These sources are inherently variable and dependent on 9 

weather conditions, which makes their output less predictable than conventional generation. 10 

Therefore, short-term and long-term forecasting models are crucial for ensuring grid stability 11 

and optimizing the operation of flexible power plants. 12 

Moreover, it is essential to analyze the seasonality and variability of solar and wind 13 

generation. For example, solar output typically peaks in summer months, while wind generation 14 

may be higher in winter or during specific weather patterns. Understanding these patterns 15 

allows system operators to plan for adequate backup capacity, schedule maintenance, and make 16 

data-based decisions about energy storage and market participation. 17 

To effectively integrate conventional generation such as, e.g., nuclear power plants with 18 

RES, it is necessary not only to forecast their generation but also to analyze the risks associated 19 

with their variability and seasonality. In this context, the Value-at-Risk (VaR) methodology, 20 

commonly used in financial risk management, can be adapted to assess the potential shortfalls 21 

or surpluses in RES generation over a given time horizon. The application of VaR metric in the 22 

power sector relies on the availability of relevant data provided by a Transmission System 23 

Operator (TSO). 24 

Polish TSO, namely PSE, is required to publish data on the raporty.pse.pl platform to 25 

comply with both European Union regulations and national energy law, which mandate 26 

transparency in the electricity market. As the legal basis for this obligation, the following acts 27 

and regulations can be mentioned: 28 

1. REMIT Regulation (EU No 1227/2011) – This regulation on wholesale energy market 29 

integrity and transparency obliges TSOs to publish information that may affect electricity 30 

prices, such as planned and unplanned outages, generation availability, and cross-border 31 

capacities. It results in stronger protection against market manipulations. 32 

2. Transparency Regulation (EU No 543/2013) – This regulation requires TSOs to publish 33 

detailed operational data, including: 34 

 Load forecasts and actual load. 35 

 Generation forecasts and actual generation by type. 36 

 Transmission infrastructure availability. 37 

 Cross-border exchange capacities and flows. 38 
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3. Network Codes and Guidelines, such as e.g. the CACM Guideline (i.e., Capacity 1 

Allocation and Congestion Management), specify the types of data and their format to 2 

be published to ensure fair access to market-relevant information. 3 

Based on the obligations established by the above mentioned documents, PSE publishes the 4 

following data on the raporty.pse.pl website: 5 

 Real-time and historical data on electricity load and generation. 6 

 Cross-border exchange capacities and actual flows. 7 

 Planned and unplanned outages of transmission infrastructure. 8 

 Market-related data, such as balancing and congestion management information. 9 

The purpose of publishing such data is to ensure equal access to information for all market 10 

participants. Simultaneously, extensive data access enhances market transparency,  11 

and ultimately supports efficient and secure operation of the power system. 12 

Due to the critical nature of the national power system managed and operated by each TSO, 13 

some operational data, such as power flows, are not publicly available, as they may be linked 14 

to sensitive internal wholesale market information or pose a threat to system security. 15 

Consequently, while TSOs are obligated to publish a wide range of operational and market data 16 

(e.g. via platforms like ENTSO-E Transparency Platform or national TSOs platforms), certain 17 

real-time data may be withheld for sensitivity and security reasons. 18 

On the basis of system information about the Polish electricity market, papers have been 19 

published on demand forecasting over a longer time horizon (Raczkowski et al., 2022), studies 20 

on the long-term development of the country's electricity system (Pluta et al., 2023), energy 21 

price forecasting with a daily horizon (Pilot et al., 2024), among others. 22 

The VaR methodology has frequently been applied in risk assessment within the electricity 23 

market, primarily to evaluate the risk associated with price fluctuations (Žiković et al., 2015; 24 

Halkos, Tsirivis, 2019; Westgaard et al., 2019; Bao et al., 2021). VaR forecasts based on models 25 

from the GARCH family have been employed to analyze daily price changes in energy 26 

commodities, as demonstrated by Laporta et al. (2018). 27 

The main objective of this study is to estimate the risk associated with fluctuations in the 28 

coverage of electricity demand by RES over a very short time horizon of 15 minutes. To assess 29 

this risk, VaR was calculated using autoregressive ARIMA-GARCH models, which account 30 

for the daily cycle of variability. On the basis of diagnostic tests, the effectiveness of the 31 

approach used was assessed. 32 

The study was based on system data provided by PSE, published in reports on the operation 33 

of the National Power System, covering the period from June 14 to August 31, 2024 (79 days, 34 

7,584 15-minute intervals). The following variables were used in the analysis: 35 

  36 
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 GREEN [MW] – the amount of electricity generated in a given quarter from photovoltaic 1 

and wind source. 2 

 DEMAND [MW] – electricity demand in a given quarter. 3 

 GREEN/DEMAND [%] – the percentage of demand covered by the overall production 4 

from photovoltaic and wind sources. 5 

In the following analysis, the term “Demand” refers to the amount of electrical power 6 

consumed at a specific time, based on real-time or historical measurements. In reports published 7 

by TSOs, this quantity is often referred to as “load.” In practice, the terms are frequently used 8 

interchangeably, especially in operational contexts. However, since “demand” also 9 

encompasses the required or forecasted power needed for planning purposes, this term is used 10 

throughout the analysis. 11 

The paper is organized into four sections. The second section discusses the methodological 12 

approach used in the study, based on a review of the relevant literature. In the third section the 13 

research results are presented. The fourth section summarizes the key findings, provides 14 

recommendations, and outlines directions for future research. 15 

2. Methodology 16 

In this paper, the quantile measure of Value at Risk (VaR) was used to estimate risk.  17 

VaR is defined as such loss of value, that is not exceeded with the given probability 𝛾 at the 18 

given time period h, and it is expressed by the following formula (Jajuga, 2008; Ganczarek-19 

Gamrot et al., 2021). 20 

𝑃(𝑌𝑡+ℎ  ≤ 𝑌𝑡 − VaR) = 𝛾 (1) 

where: 21 

𝑌𝑡 − a present value, 22 

𝑌𝑡+ℎ − a random variable. 23 

 24 

The variable 𝑌𝑡 (GREEN/DEMAND [%]) analyzed in this study represents the coverage of 25 

electricity demand by photovoltaic and wind generation in each 15-minute interval t. 26 

𝑌𝑡 =
GREENt

DEMANDt
  (2) 

where: 27 

GREEN𝑡 − the electricity production [MW] from photovoltaic and wind sources per quarter-28 

hour t, 29 

DEMAND𝑡 − the electricity demand [MW] per quarter-hour t. 30 

  31 
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Absolute increments measured in percentage points [p.p] were used to assess absolute 1 

difference in Δ𝑌𝑡 demand coverage: 2 

Δ𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1 (3) 

and relative increments measured as relative difference in percentage [%]: 

𝑅𝑡 =
Δ𝑌𝑡

𝑌𝑡−1
 

(4) 

In financial literature, the VaR measure is typically evaluated over a single-period time 3 

horizon (h = 1) and is defined as the γ-quantile of the conditional distribution of returns (Doman, 4 

Doman, 2009): 5 

𝑃(𝑍𝑡+1 ≤ −VaR𝑡+1(𝛾)|Ω𝑡) = 𝛾  (5) 

where: 6 

Ω𝑡 − the set of information available at time t, 7 

𝑍𝑡 − the changes of considered value at time t. 8 

 9 

In this study, the risk of changes in demand coverage was estimated over a 15-minute 10 

horizon. Both absolute (3) and relative (4) increments were used to characterize coverage 11 

variability. 12 

For dynamically varying time series values VaR𝑡+1(𝛾)|Ω𝑡 can be estimated using the 13 

stochastic ARIMA-GARCH model (McNeil and Frey, 2000): 14 

𝑍𝑡 = 𝜇𝑡 + 𝜀𝑡√𝜎𝑡
2  (6) 

where: 15 

𝜇𝑡 – the expected value of a process is described by ARIMA (Auto-Regressive Integrated 16 

Moving Average) model, 17 

𝜎𝑡
2 – the variance of a process is described by GARCH (Generalized Autoregressive 18 

Conditional Heteroskedasticity) model, 19 

𝜀𝑡 – white noise 𝐸(𝜀𝑡) = 0; 𝐷2(𝜀𝑡) = 1. 20 

 21 

In electricity markets, where variables often exhibit seasonal patterns, the classical ARIMA 22 

model is typically extended to its seasonal form (SARIMA) to better capture this behavior. 23 

Seasonal ARIMA (p,d,q) (P,D,Q) (Box et al., 2008; Brockwell, Davis, 2016, p. 177) 24 

(SARIMA) models were used to describe the 𝜇𝑡 process: 25 

∆𝑠
𝑑𝑍𝑠 = (1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑍𝑡 (7) 

where: 26 

𝑍𝑡  – the value of the series at time t, 27 

B – the backshift operator, 28 

d – the order of integration of the model,  29 

D – the order of seasonal integration of the model,  30 

s – the seasonal lag. 31 
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The series ∆𝑠
𝑑𝑍𝑠𝑡 represents the values of 𝑍𝑡 after eliminating seasonality and a trend,  1 

and it is an ARMA process defined as follows: 2 

𝜙(𝐵)𝛷(𝐵𝑠)∆𝑠
𝑑𝑍𝑠𝑡 = 𝜃(𝐵)𝛩(𝐵𝑠)𝑒𝑡  (8) 

where: 3 

𝜙(𝐵) = 1 − ∑ 𝜙𝑖
𝑝
𝑖=1 𝐵𝑖; 4 

𝛷(𝐵) = 1 − ∑ 𝜙𝑖
𝑃
𝑖=1 𝐵𝑖; 5 

𝜃(𝐵) = 1 − ∑ 𝜃𝑖
𝑞
𝑖=1 𝐵𝑖; 6 

𝛩(𝐵) = 1 − ∑ 𝜙𝑖
𝑄
𝑖=1 𝐵𝑖; 7 

𝜙𝑖 – parameter of the autoregressive part, 8 

𝛷𝑖 – parameter of the seasonal autoregressive part, 9 

𝜃𝑖 – parameter of the moving average part, 10 

𝛩𝑖 – parameter of the seasonal moving average part, 11 

p – order of the autoregressive part of the model, 12 

P – order of the seasonal autoregressive part of the model, 13 

q – order of the moving average part of the model, 14 

Q – order of the seasonal moving average part of the model, 15 

𝑒𝑡 – residuals E(𝑒𝑡), 𝐷2(𝑒𝑡) = 𝜎𝑡
2.  16 

The GARCH(𝑝𝜎, 𝑞𝜎) model (Bollerslev (1986)) may be written as: 17 

𝜎𝑡
2 = 𝜛 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2 + ∑ 𝛽𝑖𝜎𝑡−𝑖
2𝑝𝜎

𝑖=1
𝑞𝜎
𝑖=1 . (9) 

where: 18 

𝑝𝜎, 𝑞𝜎 − orders of the model, 19 

𝜛 − unconditional part of variance. 20 

 21 

The choice of rows 𝑝, 𝑞, 𝑝𝜎 , 𝑞𝜎 of model (6) was based on minimising the value of the loss 22 

function (Schwarz, 1978) according to the BIC (Bayesian Information Criterion) criterion:  23 

BIC =
−2𝐿𝐿

𝑇
+

𝑚𝑙𝑛(𝑇)

𝑇
 (10) 

where: 24 

T – length of time series, 25 

m – number of model parameters, 26 

LL – the logarithm of the maximum likelihood function used to estimate the model parameters. 27 

 28 

Estimation and quality assessment of the estimated models, was carried out using methods 29 

implemented in the R package rugarch (Ghalanos, 2025). The choice of the model was dictated 30 

by minimising the value of the BIC criterion and the positive results of the diagnostic tests.  31 

The significance of the parameters of model (6) was tested using a robust estimation procedure 32 

(White, 1982). The Adjusted Pearson Goodness-of-Fit Test (for various histograms intervals: 33 

20, 30, 40, 50) was used to assess the consistency of the distribution of residuals with the 34 
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distribution determined in the estimation process (Palm, 1996). Under the Ljung-Box Test 1 

(lag=1), autocorrelations of residuals and squares of residuals were assessed (Fisher, Gallagher, 2 

2012). Based on the Sign Bias Test, the consistency of the prediction of the direction of change 3 

was checked (Lundbergh, Teräsvirta, 2002).  4 

Among the conditional variation models the following were compared: GARCH (Engleand, 5 

Bollerslev, 1986), EGARCH (Nelson, 1991), TGARCH (Zakoian, 1994), ALLGARCH 6 

(Hentschel, 1995). The best results were obtained for the classical form of GARCH with Skew-7 

Student distribution (sstd) (Hansen, 1994) and The Generalized Hyperbolic Distribution (ghyp) 8 

(Barndorff-Nielsen, 1978, Jiang et al., 2024) of residuals. 9 

To assess the validity of the estimated VaR values, Kupiec's proportion of failures test 10 

(Kupiec, 1995) and Christoffersen's independence of failures test (Christofersen, 1998) were 11 

used. The number of the excesses of Va𝑅(γ) has binomial distribution with a given size of the 12 

sample T. The test statistic is: 13 

𝑳𝑅𝑢𝑐 = −2 ln[ 𝛾𝑇−𝐾(1 − 𝛾)𝐾] + 2 ln {[1 − (
𝐾

𝑇
)

𝑇−𝐾

] (
𝐾

𝑇
)

𝑁

}  (11) 

where: 14 

K – is the number of the crossing of VaR(γ), 15 

T – is the length of a time series, 16 

1 − 𝛾– is a given probability with which VaR(γ), cannot exceed the loss of value. 17 

 18 

For the hit function: 19 

𝐼𝑡(𝛾) = {
1, 𝑟𝑡 < VaR(γ)

0, otherwise
  (12) 

test statistic for the independence of exceedances is given by formula: 20 

𝐿𝑅𝑐𝑐 = −2ln {
(1−𝑤̄)𝐾00+𝐾10𝑤̄𝐾01+𝐾11

(1−𝑤01)𝐾00𝑤
01

𝐾01(1−𝑤11)𝐾10𝑤
11

𝐾11
}  (13) 

where: 21 

𝐾𝑖𝑗 − the number of observations for which 𝐼𝑡(𝛾) = 𝑗 provided 𝐼𝑡−1(𝛾) = 𝑖, 𝑤𝑖𝑗 =
𝐾𝑖𝑗

𝐾𝑖0+𝐾𝑖1
, 22 

𝑤̄ =
𝐾01+𝐾11

𝑇
=

𝐾

𝑇
. 23 

The statistics 𝐿𝑅𝑢𝑐 and 𝐿𝑅𝑐𝑐 have 2  asymptotic distribution with one degree of freedom. 24 

3. Empirical results 25 

This section is divided into three subsections. The first presents the time series under 26 

analysis. The second subsection contains the results of the volatility model estimations.  27 

The final subsection provides the estimated risk measures along with their corresponding 28 

diagnostic tests. 29 
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3.1. Data visualization 1 

The study was conducted based on system data available on the PSE platform during the 2 

summer of 2024, covering the period from July 14 to August 31 (79 days, 7584 quarters). 3 

Box plot visualizations (Figure 1) present the distributions of the total amount of electricity 4 

generated from photovoltaic and wind sources (denoted as GREEN [MW]) across individual 5 

quarters of the day. The highest daily production from these sources of renewable energy occurs 6 

between sunrise and sunset. Extreme values are associated with unusually high wind generation 7 

during nighttime and elevated photovoltaic output during the day, which are atypical for the 8 

analyzed period. 9 

 10 

Figure 1. Box plots presenting the distribution of electricity generated from photovoltaic and wind 11 
sources in each quarter-hour of the day during the analyzed period. 12 

Source: Own calculation. 13 

Box plot visualizations (Figure 2) present the distribution of electricity demand  14 

(i.e. DEMAND [MW]) for each quarter-hour of the day during the analyzed period.  15 

Demand remained stable throughout the period, with only one outlier observed. The highest 16 

daily demand occurred between the 36th and 84th quarters (9:00 AM to 9:00 PM). 17 
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 1 

Figure 2. Box plots presenting the distribution of electricity demand in each quarter-hour of the day 2 
during the analyzed period. 3 

Source: Own calculation. 4 

Box plot visualizations (Figure 3) illustrate the distribution of the share of electricity 5 

generated from RES in each quarter-hour of the day relative to the electricity demand for that 6 

quarter (denoted as Yₜ, GREEN/DEMAND [%]). During peak sunlight hours, the median share 7 

of RES generation reaches up to 50% of the electricity demand. Under favorable conditions, 8 

demand coverage could reach as high as 80%. At night, when demand is lower, the median 9 

coverage from RES drops to around 10%. In the early hours of the day, when demand is limited, 10 

the upper range of variability reaches nearly 40% coverage. During evening hours, when 11 

demand is elevated, this range is significantly narrower. Higher evening coverage is associated 12 

with atypical periods of increased RES generation. 13 

 14 

Figure 3. Box plots presenting the distribution of electricity demand coverage by power generated from 15 
solar and wind sources in each quarter-hour of the day during the analyzed period. 16 

Source: Own calculation. 17 
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Figure 4 presents the time series of electricity demand coverage (Yₜ, GREEN/DEMAND 1 

[%]) by power generated from photovoltaic and wind sources, along with the ACF(96) and 2 

PACF(96) functions. No trend is observed during the analyzed period. In addition to 3 

autocorrelation and the daily cycle (PACF, lag = 96), a stronger autocorrelation is also 4 

noticeable for the five subsequent quarter-hours (PACF, lag = 5). 5 

6 

 7 

Figure 4. Time series of electricity demand coverage by generation from photovoltaic and wind sources, 8 
along with the ACF(96) and PACF(96) functions. 9 

Source: Own calculation. 10 

To assess the risk of changes in the degree of demand coverage by RES, time series of 11 

absolute increments Δ𝑌𝑡 (3) and relative increments  𝑅𝑡 (4) were considered, illustrating the 12 

change in demand coverage by RES from one 15-minute interval to the next. Figure 5 presents 13 

the distributions of changes for each quarter-hour of the analyzed period. The largest absolute 14 
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changes are observed during periods of full sunlight (top chart). The greatest relative changes 1 

(bottom chart) occur at sunrise (18th interval) and sunset (85th interval), resulting in an increase 2 

in energy production from one interval to the next by 60% or a decrease by 50%, respectively. 3 

 4 

Figure 5. Changes of the energy produced from photovoltaic and wind sources in comparison to the 5 
previous quarter-hour. 6 

Source: Own calculation. 7 

Figure 6 presents a time series of absolute changes in demand coverage within each quarter-8 

hour. The largest decreases fluctuate around 6 percentage points, while increases do not exceed 9 

8 percentage points. Greater variability can be observed in July (the first month of the study). 10 

A significant increase in demand coverage in August is associated with the public holiday on 11 

August 15, 2024 (Thursday). The values of the ACF function confirm the daily cyclicality of 12 

coverage. Based on the PACF function values, stronger correlations can be observed within the 13 

previous four quarter-hours (i.e., a full hour). 14 

Figure 7 presents a time series of relative changes in demand coverage within each quarter-15 

hour. Here, the range of variability spans from a 50% decrease to a 60% increase compared to 16 

the previous quarter-hour. Greater fluctuations can be observed in July than in the following 17 

month. Analyzing the ACF function values, one can again notice daily repetition, as well as  18 

a clearly stronger correlation with the values from the previous quarter-hour (PACF). 19 
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1 

 2 

Figure 6. Time series of absolute changes in demand coverage by photovoltaic and wind production, 3 
along with the ACF(96) and PACF(96) functions. 4 

Source: Own calculation. 5 
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1 

 2 

Figure 7. Time series of relative changes in demand coverage by photovoltaic and wind production, 3 
along with the ACF(96) and PACF(96) functions.  4 

Source: Own calculation. 5 

3.2. Volatility models  6 

Table 1 presents the BIC values for selected model orders (6) and the p-values of the applied 7 

diagnostic tests. Models were considered separately for absolute increments Δ𝑌𝑡 (3) and relative 8 

changes 𝑅𝑡 (4). Additionally, for both types of time series, models were fitted with and without 9 

accounting for daily seasonality. For both absolute and relative series, the optimal models in 10 

terms of fit to empirical data were identical in their general form. Models incorporating daily 11 

seasonality (s = 96) required the inclusion of the previous four quarter-hours to describe the 12 

expected value. Models without daily differencing achieved the best results with lags of up to 13 

three quarter-hours. Models that did not account for daily seasonality performed worse in 14 

diagnostic tests (p-values highlighted in red). 15 
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Table 1.  1 
Basic indicators for assessing models ARIMA-GARCH 2 

 

Model BIC 

p-value 

DIFF 

Ljung-Box Test on  

(Lag = 1) Sign Bias 

Test 

Adjusted Pearson 

Goodness-of-Fit Test  

(for 20, 30, 40, 50 

histograms intervals) Residuals 
Squared  

Residuals 

A
B

S
O

L
U

T
E

 (
3

) sARIMA(4,0,0)(0,1,0)[96] 

 - GARCH(1,1) 
-6.6568 0.2250 0.2601 0.2601 

20 0.4318 

30 0.2446 

40 0.8110 

50 0.7611 

ARIMA(3,0,0) 

 - GARCH(1,1) 
-7.0691 0.0032 0.5469 0.5907 

20 0.0322 

30 0.0172 

40 0.0045 

50 0.1232 

R
E

L
A

T
IV

E
 (

4
) 

sARIMA(4,0,0)(0,1,0)[96] 

- GARCH(1,1) 
-3.4091 0.0713 0.2677 0.4124 

20 0.5641 

30 0.4321 

40 0.3413 

50 0.2761 

ARIMA(3,0,0) 

- GARCH(1,1) 
-3.8606 0.7636 0.8066 0.0444 

20 0.0278 

30 0.0335 

40 0.2023 

50 0.1349 

Source: Own calculation. 3 

The residuals of the obtained models follow the skewed Student’s t-distribution (sstd), 4 

except for the ARIMA(3,0,0) – GARCH(1,1) model for relative increments, for which a better 5 

fit was achieved using the Generalized Hyperbolic Distribution (ghyp). 6 

Table 2 presents the assessment of model parameters from Table 1. Most parameter 7 

estimates are statistically significant, with exceptions marked in lighter font in Table 2.  8 

Both seasonal and non-seasonal models, applied to absolute and relative quarter-hourly changes 9 

in demand coverage, yield similar estimates for identical lags. In models integrated at order 96, 10 

significant parameters correspond to lags up to four quarter-hours (i.e. one hour).  11 

Non-seasonally differenced models show significance for the last three quarter-hours. Variance 12 

models consistently include only the previous quarter-hour. Models based on absolute 13 

increments fall into the IGARCH class, which lacks a defined variance but remains stationary. 14 

Residuals are right-skewed. 15 

  16 
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Table 2. 1 
Parameter estimates of models for changes in electricity demand coverage by RES 2 

Part of 

model  

(6) 

Parametrs 

ABSOLUTE DIFFERENCE RELATIVE DIFFERENCE 

sARIMA(4,0,0)(0,1,0)[96] 

GARCH(1,1) 

sstd 

ARIMA 

(3,0,0) 

GARCH(1,1) 

sstd 

sARIMA(4,0,0)(0,1,0)[96] 

GARCH(1,1) 

sstd 

ARIMA 

(3,0,0) 

GARCH(1,1) 

ghyp 

𝜇𝑡 

𝜙1 0.2452 0.5203 0.2943 0.5212 

𝜙2 0.2153 0.2877 0.2133 0.2796 

𝜙3 0.1362 0.1044 0.1127 0.1169 

𝜙4 0.1006 x2 0.0771 x 

𝜎𝑡
2 

𝜛 <0.0001 0.1044 0.0002 0.0002 

𝛼 0.2382 0.2557 0.2640 0.3263 

𝛽 0.7608 0.7433 0.7162 0.6356 

𝜀𝑡 

skew 0.9980 0.9255 1.0252 0.8913 

shape 5.1166 5.7378 4.6403 0.2500 

gh_lambda x x x -2.3768 

Source: Own calculation. 3 

3.3. Risk measure 4 

Based on time series models of changes in demand coverage by RES, both absolute 5 

(Δ𝑌)𝑡  and relative (R𝑡), we estimated the risk of deviations in coverage in the following quarter-6 

hours (5) from the expected values. Figure 8 presents one-step-ahead VaR forecasts, calculated 7 

with the use of the estimated models at a fixed probability level of γ = 0.01. The red part of the 8 

plot marks the 1% VaR for the largest drops in coverage, while the green line indicates the  9 

1% VaR for the largest increases. Notably, seasonal autoregressive models using a rolling daily 10 

window adapt well to observed daily and weekly cycles (left panel). For these models, extreme 11 

changes are clearly separated from the rest. In contrast, models without daily cyclicality (right 12 

panel) also appear to capture daily and weekly patterns, but their VaR estimates span over 13 

nearly the entire range of observed changes, making the identification of extremes less distinct. 14 

                                                 
2 x in Table 2 – variable not included in the model for the given parameter. 
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 1 

Figure 8. VaR(0.01) estimated by ARIMA-GARCH. 2 

Source: Own calculation. 3 

Table 3 presents VaR forecast statistics for decreases in demand coverage at γ = 0.01 and 4 

0.05, and for increases at γ = 0.99 and 0.95, estimated independently using each of the four 5 

considered models. 6 

Table 3.  7 
Statistics of selected distributions of VaR(𝛾) forecasts for the next quarter 8 

 

MODEL 
 
STATISTICS 

ABSOLUTE DIFFERENCE RELATIVE DIFFERENCE 

sARIMA(4,0,0)(0,1,0) 

[96] GARCH(1,1) 

sstd 

ARIMA(3,0,0) 

GARCH(1,1) 

sstd 

sARIMA(4,0,0)(0,1,0) 

[96] GARCH(1,1) 

sstd 

ARIMA(3,0,0) 

GARCH(1,1) 

ghyp 

S
H

O
R

T
F

A
L

L
S

 𝜸 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 

Min. -0.1691 -0.1090 -0.1795 -0.1175 -0.7751 -0.5384 -0.6930 -0.5322 

1stQu. -0.0326 -0.0201 -0.0336 -0.0227 -0.1511 -0.0943 -0.1219 -0.0870 

Median -0.0214 -0.0127 -0.0151 -0.0084 -0.1086 -0.0636 -0.0751 -0.0462 

Mean -0.0258 -0.0155 -0.0217 -0.0131 -0.1284 -0.0775 -0.0884 -0.0563 

3sdQu. -0.0146 -0.0080 -0.0080 -0.0032 -0.0848 -0.0466 -0.0451 -0.0184 

Max. -0.0044 0.0020 0.0193 0.0260 -0.0143 0.0174 0.0996 0.1438 

S
U

R
P

L
U

S
E

S
 𝜸 0.99 0.95 0.99 0.95 0.99 0.95 0.99 0.95 

Min. 0.0017 -0.0053 -0.0248 -0.0301 0.0183 -0.0320 -0.0849 -0.1415 

1stQu. 0.0152 0.0086 0.0093 0.0044 0.0880 0.0473 0.0722 0.0285 

Median 0.0220 0.0132 0.0164 0.0100 0.1132 0.0650 0.1110 0.0609 

Mean 0.0259 0.0156 0.0197 0.0123 0.1334 0.0787 0.1300 0.0708 

3sdQu. 0.0323 0.0199 0.0284 0.0199 0.1584 0.0968 0.1680 0.1082 

Max. 0.1972 0.1267 0.1638 0.1199 0.8046 0.5929 1.0385 0.7155 

Source: Own calculation. 9 

Interpreting the maximum loss based on absolute increments estimated at γ = 0.01, one can 10 

say that with 0.99 probability, demand coverage will not decrease by more than 16.91 11 

percentage points (17.95 for the non-cyclical model) in the next quarter-hour. This threshold 12 

may be exceeded with a probability of 0.01. During the study period, the median for this 13 

probability reached 2.58 percentage points (2.17 for the non-cyclical model), meaning that in 14 
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50% of the analyzed quarter-hours, the forecasted coverage is not expected to drop by more 1 

than 2.58 (2.17 for the non-seasonal model) percentage points with 0.99 confidence. 2 

For losses estimated based on relative increments at γ = 0.01, one can say that with  3 

0.99 probability, demand coverage will not decrease by more than 77.51% (69.30% for the non-4 

cyclical model) in the next quarter-hour. 5 

Analyzing the estimated VaR values based on cyclical and non-cyclical models, it can be 6 

observed (with few exceptions) that models accounting for the daily cycle indicate greater 7 

shortfalls in demand coverage. 8 

Positive maximum values of the VaR distributions for 𝛾 = 0.01 (0.05) indicate that, with  9 

a probability of 0.99 (0.95), an increase in the share of electricity demand covered by RES 10 

production was forecasted for the following 15-minute interval. 11 

Interpreting the maximum increase in the share of electricity demand covered by RES 12 

production, it can be stated that, with a probability of 0.99, the coverage will not increase by 13 

more than 19.72 percentage points (16.38 percentage points for the non-cyclical model) in the 14 

next 15-minute interval. This level of increase may be exceeded with a probability of 0.01.  15 

In the case of surpluses estimated based on relative increments for γ = 0.99, it can be concluded 16 

that, with a probability of 0.99, the coverage of demand will not increase by more than 80.46% 17 

(103.85% for the non-cyclical model) in the subsequent 15-minute period. 18 

For the specified exceedance probabilities of potential shortfalls or surpluses in RES 19 

generation over the given time horizon, both absolute and relative increments were considered. 20 

During the analyzed period, the risk associated with potential surpluses was found to be greater 21 

than that of shortfalls. 22 

Tables 4 and 5 present the results of diagnostic tests for VaR estimates, calculated using  23 

a rolling daily window (96 quarters of an hour), always forecasting the next 15-minute interval. 24 

The accuracy of the VaR estimation was independently verified for July and August, based on 25 

both absolute and relative changes. 26 

Based on the backtesting results, one can conclude that the VaR values measured in 27 

percentage points (Table 4), estimated using models both with and without consideration of the 28 

daily cycle, were accurately calculated. These estimates can be reliably used to forecast changes 29 

of demand covered by RES production in the next 15-minute interval, for both potential 30 

shortfalls and surpluses. 31 

  32 
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Tabela 4 1 
Results of consistency and independence tests of VaR(γ) exceedances for the change in 2 

demand coverage by PV and wind production [absolute changes] 3 

Model Period Backtesting 
𝜸 

0.05 0.025 0.01 0.95 0.975 0.99 

sA
R

IM
A

(4
,0

,0
)(

0
,

1
,0

) 
[9

6
] 

 

G
A

R
C

H
(1

,1
) 

ss
td

 

JULY 

Actual % exceed 0.051 0.027 0.009 0.051 0.024 0.011 

LR.uc p-value: 0.833 0.514 0.627 0.896 0.801 0.450 

LR.cc p-value: 0.687 0.502 0.483 0.912 0.965 0.497 

AUGUST 

Actual % exceed 0.045 0.024 0.009 0.055 0.028 0.0097 

LR.uc p-value: 0.207 0.779 0.745 0.237 0.378 0.89 

LR.cc p-value: 0.064 0.791 0.727 0.387 0.604 0.744 

A
R

IM
A

(3
,0

,0
) 

G
A

R
C

H
(1

,1
) 

ss
td

 

JULY 

Actual % exceed 0.046 0.022 0.009 0,058 0,034 0,013 

LR.uc p-value: 0.347 0.235 0.627 0.042 0.002 0.153 

LR.cc p-value: 0.607 0.448 0.483 0.006 0.002 0.216 

AUGUST 

Actual % exceed 0,049 0,027 0,11 0,0498 0,0247 0,0101 

LR.uc p-value: 0.964 0.478 0.682 0.964 0.929 0.958 

LR.cc p-value: 0.138 0.493 0.642 0.478 0.739 0.728 

Source: Own calculation. 4 

Moreover, based on the backtesting results 𝛾 (Table 5), the VaR estimates derived from 5 

models that do not account for the daily cycle should be rejected for August 2024.  6 

The diagnostic tests for the remaining estimates indicate no justification for rejecting the 7 

approach in assessing the risk of extreme changes in electricity demand covered by  8 

RES production. 9 

Tabela 5.  10 
Results of consistency and independence tests of VaR(γ) exceedances for the change in 11 

demand coverage by PV and wind production [relative changes]  12 

Model Period Backtesting 
𝜸 

0.05 0.025 0.01 0.95 0.975 0.99 

sA
R

IM
A

(4
,0

,0
)(

0
,

1
,0

)[
9
6

] 
 

G
A

R
C

H
(1

,1
) 

 

ss
td

 

JULY 

Actual % exceed 0.051 0.027 0.011 0.0502 0.027 0.011 

LR.uc p-value: 0.833 0.445 0.682 0.961 0.514 0.682 

LR.cc p-value: 0.885 0.443 0.145 0.767 0.46 0.636 

AUGUST 

Actual % exceed 0.043 0.021 0.007 0.045 0.021 0.007 

LR.uc p-value: 0.074 0.135 0.056 0.207 0.105 0.134 

LR.cc p-value: 0.118 0.315 0.141 0.328 0.262 0.277 

A
R

IM
A

(3
,0

,0
) 

G
A

R
C

H
(1

,1
) 

 

g
h
y
p
 

JULY 

Actual % exceed 0.049 0.023 0.0104 0,0480 0,0240 0,0098 

LR.uc p-value: 0.974 0.55 0.815 0.658 0.63 0.903 

LR.cc p-value: 0.763 0.819 0.636 0.147 0.878 0.731 

AUGUST 

Actual % exceed 0.042 0.02 0.008 0,0360 0,0190 0,0080 

LR.uc p-value: 0.03 0.077 0.285 <0,001 0.017 0.38 

LR.cc p-value: <0.001 0.059 0.459 0.001 0.04 0.545 

Source: Own calculation. 13 

  14 



152 A. Ganczarek-Gamrot, A. Gorczyca-Goraj 

4. Conclusion and future outlook 1 

This study presents a dynamic risk estimation framework for short-term electricity demand 2 

coverage by photovoltaic and wind sources, using ARIMA-GARCH models and the  3 

VaR metric. The methodology is applied to high-frequency data from the Polish TSO, PSE,  4 

for the summer of 2024, with model accuracy validated through Kupiec and Christoffersen 5 

exceedance tests. The results provide actionable insights for short-term system balancing and 6 

contribute to the limited body of literature on high-frequency risk modeling in energy markets. 7 

Based on the results obtained for the analyzed period, it can be concluded that the coverage 8 

of electricity demand by photovoltaic and wind energy production follows an autoregressive 9 

process, characterized by pronounced volatility clustering, cyclicality, and a right-skewed 10 

heavy-tailed error distribution. Among the considered models of this class, the best results were 11 

achieved using the ARIMA(4,0,0)(0,1,0)[96]-GARCH(1,1) model with a right-skewed 12 

Student's t-distribution. This further emphasizes the strong relation between demand coverage 13 

on an hourly basis (4 quarters) and the importance of daily cyclicality in demand modeling  14 

(96 quarters). The obtained VaR forecasts based on this model can be used to estimate the risk 15 

of changes (decrease/increase) in demand coverage by RES generation. The results were 16 

compared with estimates obtained from models that do not account for daily cyclicality.  17 

During the period of increased volatility (i.e. July), both approaches performed comparably 18 

well. In the stable period (i.e. August), the model that did not account for cyclicality tended to 19 

overestimate VaR for both decreases and increases in coverage. 20 

In the course of discussion of increased integration of RES in Europe and specifically in 21 

Poland, it is important to emphasize that accurate forecasting of PV and wind generation 22 

remains essential for balancing the grid and optimizing the operation of flexible assets. 23 

Applying the VaR approach enables quantification of the potential discrepancy between 24 

renewable generation and electricity demand at a given confidence level, allowing system 25 

operators to anticipate and prepare for extreme imbalances in supply. 26 

Future research should consider incorporating multi-year datasets to enable the analysis of 27 

not only intraday patterns but also annual seasonality. While weekly cyclicality plays  28 

a significant role in modeling of electricity demand, it appears to be negligible in the context of 29 

RES generation. 30 

So far in our analysis we have used publicly available data published by PSE on 31 

raporty.pse.pl website. For further research we intend to utilize other sources of high-resolution, 32 

standardized, information on electricity generation and consumption, which is essential for 33 

improving the accuracy and robustness of our modeling approaches. That is why it is important 34 

to emphasize that the production launch of a new data repository was scheduled for 1st of July 35 

2025. This repository is referred to as CSIRE (from Polish abbreviation meaning Central 36 

Energy Market Information System) and PSE has been designated as the Energy Market 37 

http://raporty.pse.pl/
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Information Operator (Polish abbreviation OIRE, used below) in Poland, according to The Act 1 

of 20 May 2021 amending the Energy Law.  2 

The central data hub operated by PSE, i.e. CSIRE, is designed to centralize and automate 3 

market processes. The system will serve as a single point of access for stakeholders such as 4 

DSOs, suppliers, and consumers. The overarching goal of CSIRE is to improve transparency 5 

and enhance consumer awareness and involvement through access to real-time and historical 6 

energy data. From a research perspective, CSIRE will serve as a data hub, providing scientists 7 

with access to energy market data for advanced analytics, modeling, and developing forecasting 8 

tools to support the achievement of energy transition targets. 9 
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