

ASSESSMENT OF ECOSYSTEM SERVICE POTENTIAL IN POST-MINING AREAS FOR SUSTAINABLE MANAGEMENT

Beata KOŃCZAK^{1*}, Adam HAMERLA²

¹ Central Mining Institute, Department of Water Protection, Katowice, Poland; bkonczak@gig.eu,
ORCID: 0000-0003-4398-7653

² Central Mining Institute, Department of Water Protection, Katowice, Poland; ahamerla@gig.eu,
ORCID: 0000-0002-9129-2621

* Correspondence author

Purpose: The purpose of this study is to develop and apply an integrated algorithm for evaluating the ecosystem service potential of post-mining land and identifying the demand for such services in adjacent areas. The research addresses the growing need for sustainable spatial management of degraded industrial areas and aims to support evidence-based decision-making in post-mining land redevelopment.

Design/methodology/approach: The assessment was conducted across four distinct post-mining sites, considering variables such as land cover composition, landscape heterogeneity, presence of hydrological features, and anthropogenic infrastructure. The proposed methodology facilitates the identification of optimal land-use strategies, supporting sustainable spatial planning and redevelopment of degraded post-industrial sites.

Findings: The results demonstrate that applying ecosystem service-based valorisation enhances decision-making processes and aligns land reclamation with broader socio-economic and environmental objectives. The results indicate that the applied algorithm makes it possible to identify effective development directions for a studied post-mining area as well as support the decision-making process in the spatial management of sites that have lost their economic functions.

Practical implications: The value of the work lies in offering a replicable tool for planners and decision-makers seeking to align land reclamation with ecological and societal benefits. It contributes to bridging the gap between environmental science and strategic land-use management.

Originality/value: This paper presents a novel, integrated method for assessing post-mining land in terms of its potential to provide ecosystem services—a perspective that remains underexplored in current literature.

Keywords: spatial planning, environmental valorisation, land attractiveness, land cover analysis.

Category of the paper: Research paper.

1. Introduction

1.1. The Impact of Environmental Degradation on Ecosystem Service Provision

Sustainable land management plays a pivotal role in optimizing the environment's potential to deliver essential goods and services to society (Elmqvist et al., 2015; Ramirez, 2019). The expansion of anthropogenically transformed landscapes alters both the quantity and type of ecosystem services provided and modifies societal demands on the environment. For instance, areas with high levels of surface sealing intensify the need for rainwater and snowmelt retention systems. Similarly, high population densities elevate the demand for accessible recreational green spaces. Integrating ecosystem service considerations into development strategies is vital to enhancing human well-being and supporting sustainable economic growth (Ahirwal, Pandey, 2021).

Extractive activity leads to negative and often irreversible damage to ecosystems, both during coal deposit exploration as well as after mining is concluded (Neves et al., 2016; Rusche, 2019). Sanchez et al. (2014) state that aspects related to environmental protection and a lasting positive legacy for society as regards mine closure should be factored in at every stage of a mine's life cycle. This can be made possible with the engagement of broad groups of stakeholders across a mine's entire life cycle and the constant assessment of the influence that the mining activity exerts on the environment and society.

Numerous reports can be found in literature as regards the negative impact of extractive activity on: aquatic and terrestrial ecosystems (Mercado-Garcia et al., 2018; Beck et al., 2020), woodland areas (Obeng et al., 2019; Sonter et al., 2017; Zipper et al., 2011), microbial ecosystems (Orcutt et al., 2020; Tost et al., 2020) and biodiversity (Prach, Tolvanen, 2016).

The progressing growth of the economy and population leads to an increase in the demand for ecosystem services and the need for the sustainable management of post-industrial and post-mining land to restore its functions related to ecosystem services (Rosa et al., 2019).

1.2. Restoration Approaches

Ahirwal et al. (2021) state that mining activity leads to ecosystem service depletion through deforestation, topsoil and overburden displacement and the removal of significant bulks of waste and earth. However, they indicate that the appropriate reclamation measures, particularly planting plants resistant to climate change and stress conditions that are also native species, may enable the restoration of the ecosystem condition to a degree where it would be capable of providing ecosystem services and meeting the goals of international policies such as the UN Sustainable Development Goals.

Post-mining land reclamation towards reforestation may improve the resistance to climate change and alleviate its impact at a regional scale, while reclamation towards arable land and pastures may have a positive influence on local food production and the use of bioenergy (Larondelle, Haase, 2012).

On the other hand, Gwenzi (2021) reports the necessity to develop new guidelines for post-mining land reclamation. Currently the sole determinant for assessing the potential for restoring post-mining land to a useful state are the results of soil quality testing (e.g., pH, organic carbon content in the soil) (Bandyopadhyay et al., 2020; Agus et al., 2016). Post-mining land restoration should be performed using the results of tests conducted by means of innovative testing tools such as drones, laser cameras, genomics, big data analytics (Gwenzi, 2021) or satellite image analyses (McKenna et al., 2020). Such innovative tools can help unravel the complex relationships between biotic and abiotic components as well as ecosystem functions and services, which are currently difficult to investigate by means of conventional techniques.

1.3. Ecosystem Service Valuation

However, there are few literature reports concerning the transformation of post-mining areas in a manner that would enable benefiting from the ecosystem services provided by them (Boldy et al., 2021). Similarly, Boldy et al. (2021) report a lack of methodological cohesion in assessments of the post-mining land potential for providing ecosystem services.

Addressing this gap, the present study introduces a comprehensive algorithm for assessing ecosystem service potential and evaluating demand in surrounding areas. This approach leverages cutting-edge analytical tools to inform strategic planning and support evidence-based spatial management of post-industrial land.

2. Materials and methods

2.1. Characteristics of the study areas

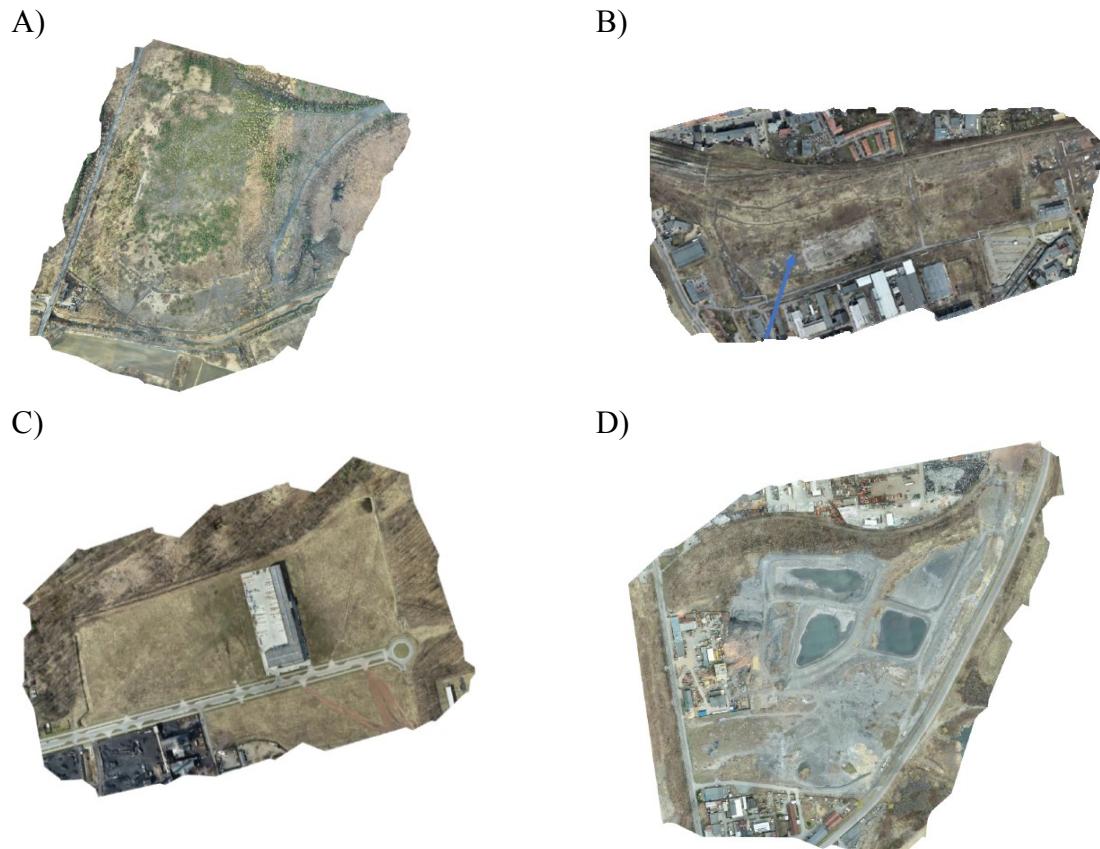
The studies were conducted for 4 post-mining areas differing in the type of land cover as well as the presence of utilities and buildings. All the analysed areas were located in the Silesian Voivodeship in Poland. This region of Poland exhibits an industrial character based on traditional branches of manufacturing. It is currently undergoing an industrial restructuring process involving the total or partial decommissioning of mines, obsolete steelworks and associated processing plants. The closure of these sites leads to the generation of post-industrial and post-mining areas that require reclamation. The sites are characterised below:

Site 1 – “Borowa 2” waste dump located in Ruda Śląska, Poland

The former waste dump of the Bielszowice mine. The area is covered with dense vegetation and is located in the vicinity of green areas – woodland and agricultural – in the Kłodnica river valley. The site is currently used for recreational purposes. It exhibits significant height differences. It is undeveloped and no buildings or waste can be found there. The site has access to a public road.

Site 2 – Site of the decommissioned Rozbark coal mine encompassing railway siding, Bytom, Poland

The site of the decommissioned Rozbark coal mine encompassing former railway siding, stockyards and primary plant infrastructure. The area is flat, developed and covered with vegetation. Historical structures (railway siding) can be found in a part of the site. There are no buildings or access to infrastructure in the remaining, greater part of the area. In its vicinity are industrial sites as well as residential and service infrastructure. It has access to a public road.


Site 3 – Reclaimed site of the Powstańców coal mine, Bytom, Poland

Flat area with a regular shape, undeveloped and covered with low-growing vegetation. It is located in the immediate vicinity of green woodland areas as well as industrial sites. From the north it borders a manufacturing plant, whereas its west and south borders are by the Segiet stream bed and the Szarlejka river bed. The site has access to a public road.

Site 4 – Waste dump and transport infrastructure of the Michał coal mine, Siemianowice Śląskie, Poland

Settling ponds partially filled with water can be found at the top of the waste dump. Dirt coverage, with dense uncontrolled vegetation in the southern part. Visible unpaved traffic routes. Service, residential and recreational infrastructure can be found in the vicinity of the site. It has access to a public road.

Figure 1 displays images taken with a drone to present the varied structure of the land cover.

Figure 1. Analysed areas A) Site 1 – Borowa 2 waste dump in Ruda Śląska, Poland; B) Site 2 – Site of the decommissioned Rozbark coal mine encompassing railway siding, Bytom, Poland; C) Site 3 – Reclaimed site of the Powstańców coal mine, Bytom, Poland; D) Site 4 – Waste dump and transport infrastructure of the Michał coal mine, Siemianowice Śląskie, Poland.

Source: GIG-PIB.

The analyses were conducted for the 4 post-mining areas as well as for their vicinity within a radius of 1 km from the defined site borders and municipalities where the sites are located.

2.2. Assessment of the demand for areas with high recreational attractiveness at the municipality scale

In order to assess the demand for areas with high recreational attractiveness in a municipality that contains a post-mining area, the recreational attractiveness of the studied sites was analysed per the methodology proposed by Lupa (2016). This methodology was selected due to its proven effectiveness in evaluating recreational potential based on land cover, which directly influences the accessibility and perceived quality of natural areas.

The land cover type was defined based on the Corine Land Cover classification (Urban Atlas, 2018), which offers standardized, comparable, and spatially explicit data on land use across Europe.

The recreational attractiveness factor values (WAR_{LULC}) depending on the type of land cover are compiled in Table 1.

Table 1.
WAR_{LULC} values depending on the land cover type

Land type	Land description	Type per the Corine Land Cover classification	CLC type	WAR _{LULC}
Developed and urbanized anthropogenic land	Continuous urban fabric	Continuous urban fabric	111	37.12
	Discontinuous urban fabric	Discontinuous urban fabric	112	37.12
	Industrial or commercial units	Industrial or commercial units	121	37.12
	Controlled vegetation	Green urban areas	141	52.78
		Sport and leisure facilities	142	53.78
	Traffic infrastructure	Road and rail networks and associated land	122	37.12
	Mining grounds	Dump sites	132	37.12
		Mineral extraction sites	131	37.12
	Other developed land	Construction sites, Port areas, Airports	133, 123, 124	37.12
	Urbanised undeveloped land ¹	Several types, mean value		51.64
	Cemeteries	Green urban areas	141	52.78
Reclaimed land	Land transformed into woodland areas	Broad-leaved forest, Coniferous forest, Mixed forest	311, 312, 313	76.26
	Land transformed into agricultural areas	Non-irrigated arable land	211,	47.47
		Permanently irrigated land	212	
		Complex cultivation patterns	242	48.65
		Land principally occupied by agriculture, with significant areas of natural vegetation	243	56.48
		Agro-forestry areas	244	47.47
		Pastures	231	45.71
		Annual crops associated with permanent crops	241	47.47
Agricultural land	Arable land	Non-irrigated arable land	211	47.47
		Permanently irrigated land	212	47.47
	Complex cultivation patterns ²	Several types, mean value	242	48.65
	Land principally occupied by agriculture, with significant areas of natural vegetation ³	Several types, mean value	243	56.48
	Orchards ⁴	Several types, mean value		56.48
	Permanent meadows	Pastures	231	45.71
	Permanent pastures	Pastures	231	45.71
	Developed agricultural land	Discontinuous urban fabric	112	47.47
	Ground under orchards	Water bodies	512	73.23
	Ground under ditches	Water bodies	512	73.23

¹ Arithmetic mean for factors for arable land, pastures, moors and heathland, and built-up areas.

² Arithmetic mean for factors for arable land, pastures and controlled vegetation.

³ Arithmetic mean for factors for arable land, pastures, forests, moors and heathland.

⁴ Arithmetic mean for factors for arable land, pastures, forests, moors and heathland.

Cont. table 1.

Woodlands	Forests	Broad-leaved forest	311	76.26
		Coniferous forest	312	76.26
		Mixed forest	313	76.26
	Forests and shrubbery in transition ⁵	Several types, mean value	324	60.99
	Moors and heathland	Moors and heathland	322	76.26
Tree-and shrub-covered land	Natural swards and pastures	Natural grassland	321	45.71
	Sclerophyllous vegetation	Sclerophyllous vegetation	323	45.71
	Dispersed vegetation	Sparsely vegetated areas Sparsely vegetated areas	333	45.71
Marsches	Inland marshes	Inland marshes	411	45.71
Water courses		Water courses	511	73.23
Water reservoirs		Water bodies	512	73.23
Ecological sites		Several types, mean value		65.07
Barren land	Naturogenic	Several types, mean value		65.07
	Anthropogenic	Construction sites	133	37.12

Source: Urban Atlas (2018).

These values reflect the assumed capacity of each land cover type to deliver recreational ecosystem services, based on empirical observations and prior valuation studies. For instance, forests and green urban areas are associated with higher attractiveness values due to their accessibility, biodiversity, and cooling effects in urban environments.

The weighted mean recreational attractiveness factor for the municipality was calculated using the following formula (1):

$$WAR_g = \frac{\sum_{i=1}^n s_i \cdot WAR_{LULC}}{\sum_{i=1}^n s_i} \quad (1)$$

where:

WAR_g – weighted mean recreational attractiveness factor for given land unit cover,

s_i – surface area of an i -th site,

WAR_{LULC} – recreational attractiveness factor for an i -th site's land cover.

The classification of recreational attractiveness for each municipality was adopted as follows:

- A – High (61-80 pts).
- B – Medium (40-60 pts)
- C – Low (<39 pts)

The thresholds for classification were determined based on the natural distribution of WAR_g values obtained across multiple municipalities and on expert-based interpretation, ensuring consistency with previous studies (Lupa, 2016).

⁵ Arithmetic mean for factors for pastures, forests, moors and heathland.

To assess demand, the inverse of the weighted mean recreational attractiveness factor was used, assuming that lower local attractiveness increases the demand for additional recreational spaces. The demand level was categorized as shown in Table 2, with threshold ranges derived from quartile-based distribution and sensitivity analysis conducted on a test sample of municipalities.

Table 2.

Classification of the demand for areas with high recreational attractiveness

Score	Demand class
1.2-1.4	Very high (1)
1.5-1.8	High (2)
1.9-2.2	Medium (3)
2.3-2.6	Low (4)

Source: GIG-PIB.

These classification thresholds were established to reflect meaningful differences in recreational demand levels across municipalities.

2.3. Assessment of the natural attractiveness of post-mining land

The natural attractiveness of post-mining land was assessed based on a modified version of the scoring method proposed by Jakiel (2015), which was adapted to the specifics of post-industrial terrains. The selected variables reflect key landscape features that influence the potential for recreational use and visual appeal, thus supporting the delivery of cultural ecosystem services.

Each component was selected based on its relevance to recreational and ecological potential:

- s1 – Lay of the land: Topographic variation enhances landscape diversity and is attractive for recreational use such as hiking.
- s2 – Presence of rock formations: Rocks provide aesthetic and geological interest.
- s3 – Type of land cover: Influences shade, biodiversity, and microclimate.
- s4 – Presence of water bodies: Water features are consistently valued in recreational landscapes.
- s5 – Landscape diversification: Heterogeneous landscapes are more attractive for users and better support biodiversity.
- s6 – Other anthropogenic objects: Certain features may either detract from (e.g., illegal dumping) or enhance (e.g., cultural heritage sites) recreational value.

Scoring for each criterion ranged from 0-3 points, calibrated based on expert knowledge, landscape guidelines, and previous empirical applications of the method. The criteria are presented in Table 3.

Table 3.*Scoring criteria depending on the analysed terrain attractiveness factor*

Component	Group of criteria	Detailed criteria	Landscape evaluation criterion with assigned number of scoring points					
s1	Vertical variation and lay of the land	Average sloping	19-45°	9-18°	5-8°	<5°		
	Number of points		3 pts	2 pts	1 pt	0 pts		
s2	Visible rock formations	yes	3 pts					
s3	Types of land cover	cover %	1-25%	26-50%	51-75%	76-100%		
		Forests	1 pt	2 pts	3 pts	4 pts		
		Meadows	1 pt	2 pts	2 pts	1 pt		
		Arable land and orchards	1 pt	1 pt	0 pts	0 pts		
		Developed land	-1 pt	-2 pts	-3 pts	-4 pts		
s4	Presence of water bodies	Watercourse length	50-250 m		<300 m			
			1 pt		2 pts			
		Water reservoirs, rapids, waterfalls and karst springs (for their presence)		Per each water body				
			1 pt					
s5	Landscape diversification	Number of land cover types	1 0 pts	2 1 pt	3 2 pts	4 3 pts		
s6	Other anthropogenic objects (undeveloped)	Anthropogenic objects	Power lines	Asphalt roads	Antennas and other objects	Illegal rubbish dumps		
			-1 pt	-1 pt	-2 pts	-2 pts		
						2 pts		

Source: Jakiel, 2015.

The total score for each post-mining site determined its attractiveness class, according to the scale in Table 4. The threshold values (0-4, 5-9, 10-14, 15-18 points) reflect natural breaks in scoring and ensure differentiation between sites of varying recreational quality.

Table 4 presents the method of classifying land attractiveness depending on the number of obtained points.

Table 4.*Attractiveness classification for post-mining land and adjacent areas*

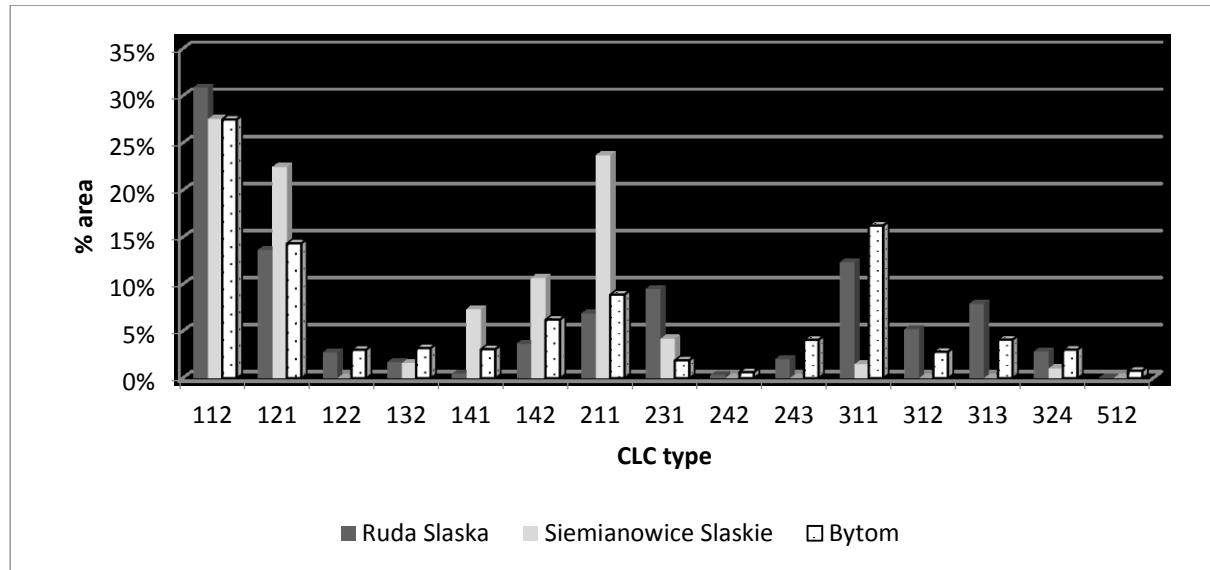
Total number of points	Score	Attractiveness class
15-18	3	Very attractive
10-14	2	Attractive
5-9	1	Poorly attractive
0-4	0	Unattractive

Source: GIG-PIB.

The final post-mining land attractiveness assessment ranges within 0-3 pts. The higher the score, the more recreationally attractive the analysed post-mining area.

2.4. Assessment of the natural attractiveness of adjacent areas within a 1 km radius of the post-mining land

The natural attractiveness of areas adjacent to post-mining land was evaluated using a simplified approach based on two key components:


- Type of land cover (s3): Reflects general recreational and ecological value.
- Landscape diversification (s5): Indicates the variety of land uses, linked to environmental heterogeneity and user experience.

These variables were selected for their ability to provide a rapid assessment while maintaining consistency with the criteria used in the assessment of the post-mining land itself. The scoring and classification followed the same principles as described above, ensuring methodological coherence across spatial zones.

3. Results and discussion

3.1. Assessment of the demand for areas with high recreational attractiveness at the municipality scale

CLC 112 (discontinuous urban fabric) is the dominant type of land cover in all the analysed municipalities. In Siemianowice Śląskie, the other dominant types of land cover are arable and agricultural land (CLC 211) and industrial sites (CLC 121), which constitute 24% and 22% respectively of the municipality's surface area. Green urban areas (CLC 141 and CLC 142) constitute 7% and 11% respectively of the Siemianowice Śląskie surface area, whereas forests (CLC 311) amount only to 1%. The significant industrial and minor forest coverage distinguishes this municipality from the other analysed locations. Forests constitute 16% of the land cover in the Bytom municipality, and 12% in Ruda Śląska. Meanwhile industrial land in these municipalities constitutes 7% and 9% of the land cover for Ruda Śląska and Bytom respectively (Figure 2).

Figure 2. Land coverage for the municipalities of Ruda Śląska, Siemianowice Śląskie and Bytom with individual types of land cover per the Corine Land Cover (CLC) classification.

Source: GIG-PIB.

Further analysis demonstrated that the Siemianowice Śląskie municipality is characterised by the greatest demand for recreational areas among all the analysed locations (Table 5).

Table 5.
Analysis of the demand for recreational areas

Municipality	Surface area (ha)	WARg	1/WARg
Ruda Śląska	6947	50.60	2.0
Siemianowice Śląskie	7764	50.38	2.0
Bytom	2551	43.68	2.3

Source: GIG-PIB.

The coefficient of recreational area demand in Siemianowice Śląskie was 2.3, whereas in the remaining municipalities it was 2.0 (Table 5).

3.2. Natural attractiveness assessment

Table 6 presents the ecosystem service demand assessment analysis results and the potential for providing ecosystem services within a 1 km radius of the analysed municipalities.

The greatest recreational attractiveness factor of 2.7 was obtained for the vicinity of the post-mining site in Ruda Śląska, which results from the local presence of green areas, significant terrain mosaicity and the presence of a watercourse. Furthermore, Site 1 itself (Borowa II waste dump) is characterised by very high recreational attractiveness, and its attractiveness factor is 2.5.

The vicinity of Site 2 (Rozbark coal mine) is characterised by medium recreational attractiveness (attractiveness factor of 1.7), while the site itself exhibits high attractiveness (attractiveness factor of 1.5), which results primarily from the local presence of historical sites.

Site 3 (Powstańców coal mine) and Site 4 (Michał coal mine) are located in an area characterised by low recreational attractiveness (attractiveness factor of 0.3). Given its flatness, only partial coverage with low-growing vegetation, very low terrain mosaicity and lack of historical sites, Site 3 is characterised by the lowest attractiveness factor among all the analysed areas, amounting to 1.0. On the other hand, Site 4 exhibits high recreational attractiveness (1.5) due to the presence of settling ponds. The study results are presented in Table 6.

Table 6.

Recreational attractiveness assessment for post-mining land and its vicinity within a 1 km radius

Site	Site name	Municipality	Vicinity (r = 1km)	Site
1	Borowa II waste dump	Ruda Śląska	2.7	2.5
2	Site of the decommissioned Rozbark coal mine encompassing railway siding	Bytom	1.7	1.5
3	Reclaimed site of the Powstańców coal mine	Bytom	0.3	1.0
4	Waste dump and transport infrastructure of the Michał coal mine	Siemianowice Śląskie	0.3	1.5

Source: GIG-PIB.

The study results demonstrate that the applied algorithm for assessing the demand for recreational areas in municipalities as well as assessing the potential of post-mining land and its vicinity for providing ecosystem services constitutes an important tool for decision-making as regards determining the directions of transforming post-mining land into areas with useful properties.

4. Conclusions

This paper has introduced a comprehensive algorithm for assessing the ecosystem service potential of post-mining land and evaluating service demand in surrounding areas. The findings highlight that key determinants of service provision capacity include land cover type, landscape heterogeneity, proximity to water features, and the presence of cultural or historical landmarks. Importantly, The study revealed that the potential of post-mining land for providing ecosystem services does not always coincide with the recreational attractiveness of the adjacent areas, indicating the need for tailored, context-sensitive redevelopment strategies.

The study further demonstrates that municipalities differ significantly in their demand for the transformation of post-mining land transformation in a recreational direction, which should be taken into account in strategic planning. Access to green spaces and the continuity of green infrastructure emerged as crucial factors in guiding sustainable land-use decisions.

The results indicate that the applied algorithm can supports spatial management by enabling planners and decision-makers to identify optimal redevelopment paths for economically obsolete areas. It offers a practical, scalable framework for integrating ecosystem service

considerations into post-industrial land reclamation, contributing to both environmental resilience and socio-economic revitalization.

The following policy instruments and incentives can be helpful in integrating ecosystem services into spatial planning.

Incorporation of ecosystem service assessments into local and regional planning regulations,

- Financial incentives such as grants, tax reductions, or subsidies for projects that enhance ecosystem services, particularly those promoting green infrastructure, habitat restoration, and recreational development on post-mining lands.
- Development of cross-sectoral stakeholder platforms to foster collaboration between mining companies, local authorities, environmental organizations, and communities, ensuring participatory and transparent decision-making processes.

Implementing targeted policy measures and incentives will enable the effective achievement of sustainable development goals and improve the quality of life for local communities.

Acknowledgements

This work was supported by the Regional Program European Funds for Silesia 2021-2027 under Grant FESL.10.11-IZ.01-07DA/23

References

1. Agus, C., Putra, P.B., Faridah, E., Wulandari, D., Napitupulu, R.R.P. (2016). Organic carbon stock and their dynamics in rehabilitation ecosystem areas of post open coal mining at tropical region. *Procedia Engineering*, Vol. 159, pp. 329-337. Elsevier Ltd. <https://doi.org/10.1016/j.proeng.2016.08.201>
2. Ahirwal, J., Pandey, V.C. (2021). Restoration of mine degraded land for sustainable environmental development. *Restoration Ecology*. Blackwell Publishing Inc. <https://doi.org/10.1111/rec.13268>
3. Bandyopadhyay, S., Novo, L.A.B., Pietrzykowski, M., Maiti, S.K. (2020). Assessment of forest ecosystem development in coal mine degraded land by using integrated mine soil quality index (Imsqi): The evidence from India. *Forests*, Vol. 11, Iss. 12, pp. 1-24. <https://doi.org/10.3390/f11121310>

4. Beck, K.K., Mariani, M., Fletcher, M.S., Schneider, L., Aquino-López, M.A., Gadd, P.S., ..., Zawadzki, A. (2020). The impacts of intensive mining on terrestrial and aquatic ecosystems: A case of sediment pollution and calcium decline in cool temperate Tasmania, Australia. *Environmental Pollution*, Vol. 265. <https://doi.org/10.1016/j.envpol.2020.114695>
5. Boldy, R., Santini, T., Annandale, M., Erskine, P.D., Sonter, L.J. (2021). Understanding the impacts of mining on ecosystem services through a systematic review. *The Extractive Industries and Society*, Vol. 8, Iss. 1, pp. 457-466, ISSN 2214-790X, <https://doi.org/10.1016/j.exis.2020.12.005>
6. Elmqvist, T., Setälä, H., Handel, S.N., van der Ploeg, S., Aronson, J., Blignaut, J.N. ..., de Groot, R. (2015). Benefits of restoring ecosystem services in urban areas. *Current Opinion in Environmental Sustainability*. Elsevier. <https://doi.org/10.1016/j.cosust.2015.05.001>
7. Gwenzi, W. (2021). Rethinking restoration indicators and end-points for post-mining landscapes in light of novel ecosystems. *Geoderma*, Vol. 387. <https://doi.org/10.1016/j.geoderma.2021.114944>
8. Jakiel M. (2015). Ocena atrakcyjność wizualnej krajobrazu dolinek krakowskich – możliwości zastosowania w planowaniu przestrzennym. *Współczesne problemy i kierunki badawcze w geografii*, Vol. 3, pp. 91-107.
9. Larondelle, N., Haase, D. (2012). Valuing post-mining landscapes using an ecosystem services approach - An example from Germany. *Ecological Indicators*, Vol. 18, pp. 567-574. <https://doi.org/10.1016/j.ecolind.2012.01.008>
10. McKenna, P.B., Lechner, A.M., Phinn, S., Erskine, P.D. (2020). Remote sensing of mine site rehabilitation for ecological outcomes: A global systematic review. *Remote Sensing*. MDPI AG. <https://doi.org/10.3390/rs12213535>
11. Mercado-Garcia, D., Wyseure, G., Goethals, P. (2018). Freshwater ecosystem services in mining regions: modelling options for policy development support. *Water*, Vol. 10, Iss. 4, No. 531. <https://doi.org/10.3390/w10040531>
12. Mitchell, M.G.E., Suarez-Castro, A.F., Martinez-Harms, M., Maron, M., McAlpine, C., Gaston, K.J., ..., Rhodes, J.R. (2015). Reframing landscape fragmentation's effects on ecosystem services. *Trends in Ecology and Evolution*. Elsevier Ltd. <https://doi.org/10.1016/j.tree.2015.01.011>
13. Neves, A.C.O., Nunes, F.P., De Carvalho, F.A., Fernandes, G.W. (2016). Neglect of ecosystems services by mining, and the worst environmental disaster in Brazil. *Natureza e Conservação*, Vol. 14, Iss. 1, pp. 24-27. <https://doi.org/10.1016/j.ncon.2016.03.002>
14. Obeng, E.A., Oduro, K.A., Obiri, B.D., Abukari, H., Guuroh, R.T., Djagbletey, G.D., Appiah-Korang, J., Appiah, M. (2019). Impact of illegal mining activities on forest ecosystem services: local communities' attitudes and willingness to participate in

restoration activities in Ghana. *Helijon*, Vol. 5, Iss. 10, e02617. <https://doi.org/10.1016/j.heliyon.2019.e02617>

15. Prach, K., Tolvanen, A. (2016). How can we restore biodiversity and ecosystem services in mining and industrial sites? *Environmental Science Pollution Research*, Vol. 23, pp. 13587-13590. <https://doi.org/10.1007/s11356-016-7113-3>

16. Ramirez, M.A.M., Pulhin, J.M., Garcia, J.E., Tapia, M.A., Pulhin, F.B., Cruz, R.V.O., ..., Inoue, M. (2019). Landscape fragmentation, ecosystem services, and local knowledge in the baroro riverwatershed, northern philippines. *Resources*, Vol. 8, Iss. 4. <https://doi.org/10.3390/RESOURCES8040164>

17. Rosa, J.C.S., Morrison-Saunders, A., Sánchez, L.E., Hughes, M., Geneletti, D. (2019). Applying ecosystem services assessment in closure planning to enhance post-mining land-use outcomes: Learning from bauxite mining in Brazil and Australia. *Proceedings of the International Conference on Mine Closure*, Vol. 2019-September, pp. 923-935. Australian Centre for Geomechanics. https://doi.org/10.36487/ACG_rep/1915_73_Morrison_Saunders

18. Rusche, K., Reimer, M., Stichmann, R. (2019). Mapping and assessing green infrastructure connectivity in European city regions. *Sustainability*, Vol. 11, Iss. 6, p. 1819.

19. Sánchez, L.E., Silva-Sánchez, S.S., Neri, A.C. (2014). *Guide for mine closure planning*. Brasília: IBRAM – Brazilian Mining Association.

20. Sonter, L.J., Herrera, D., Barrett, D.J., Galford, G.L., Moran, C.J., Soares-Filho, B.S. (2017). Mining drives extensive deforestation in the Brazilian Amazon. *Nature Communication*, Vol. 8, 1013. <https://doi.org/10.1038/s41467-017-00557-w>

21. *Urban atlas* (2018). European Environment Agency, <https://www.eea.europa.eu/data-and-maps/figures/urban-atlas>, 11.2024.

22. Zipper, C.E., Burger, J.A., Skousen, J.G., Angel, P.N., Barton, C.D., Davis, V., Franklin, J.A. (2011). Restoring forests and associated ecosystem services on Appalachian coal surface mines. *Environmental Management*, Vol. 47, Iss. 5, pp. 751-765.