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Purpose: The purpose of this paper is to identify possible directions of applications of the 6 

modal regression model in enterprise management, with a focus on the areas of logistics and 7 

marketing, and to illustrate the use of such model in constructing helpful managerial 8 

instruments. The modal regression model serves the purpose of modeling the mode of a given 9 

dependent variable conditionally on certain covariates, and, thus, it supplements both the 10 

traditional analysis based on modeling the conditional mean and the quantile regression 11 

approach. In this paper, we show that this statistical technique can be of help in developing 12 

useful decision instruments for logistics and marketing management. 13 

Design/methodology/approach: The paper is based on a review of the relevant statistical 14 

literature, conceptual work, simulations, and two empirical studies.  15 

Findings: It is shown that the modal regression model can find uses, among other things,  16 

in demand forecasting and logistics planning, optimization of industrial processes,  17 

and designing marketing mix strategies. It will enable a direct computation of the demand 18 

forecasts minimizing the total logistics cost, modeling the nominal value of an industrial process 19 

in a way guaranteeing its high capability to meet the highest quality standards, and building 20 

marketing mix models for a target consumer group without the need for market segmentation. 21 

Research limitations/implications: In further research, it will be interesting to investigate 22 

possible directions of applications of the multivariate dynamic counterpart of the model studied 23 

in this paper, namely, the dynamic vector mode regression, in particular, in discovering the 24 

most probable future scenarios for an enterprise. 25 

Practical implications: Our findings suggest that the modal regression model should be 26 

popularized among logistics and marketing managers and included in their managerial 27 

statistical toolbox. 28 

Originality/value: This paper, for the first time in the literature, draws attention to the empirical 29 

modal regression model as a potential instrument in enterprise management and illustrate the 30 

use of modal regression in logistics and marketing management. The findings included in the 31 

paper should benefit both researchers looking for the most appropriate statistical approach for 32 

their research as well as logistics and marketing managers building their decision instruments. 33 

Keywords: modal regression, managerial instruments, marketing mix models, demand 34 

forecasting, statistical process control. 35 
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1. Introduction 1 

The statistical literature over the past several years has established a formal statistical 2 

framework for a new analytical tool – the modal regression model, which serves the purpose of 3 

modeling the mode of the distribution of a given response variable or a vector of such variables 4 

of interest to the researcher. The concept of modal regression was introduced gradually, starting 5 

with linear modal regression for iid (independent and identically distributed) samples (Kemp, 6 

Santos Silva, 2012; Yao, Li, 2014) and nonparametric modal regression (Yao et al., 2012; Chen 7 

et al., 2016; Yang et al., 2020; Xiang, Yao, 2022), through modal regression for panel data 8 

(Ullah et al., 2021) and nonlinear modal regression for dependent samples (Ullah et al., 2022), 9 

and ending up with dynamic vector mode regression (Kemp et al., 2020) and the nonparametric 10 

estimation of the modal volatility function (Ullah, Wang, 2025). 11 

On the other hand, applications of this concept, especially in economic sciences, are rare 12 

and mainly serve illustrating the statistical approach without discussing its merits in economic 13 

rational decision-making. Past applications of modal regression in the economic context 14 

encompass modeling per capita expenditures on public education in the U.S. (Yao et al., 2012), 15 

macroeconomic forecasting and investigating dynamic interrelations between inflation, 16 

unemployment, and interest rates in the U.S. (Kemp et al., 2020), modeling house prices in 17 

Boston (Yang et al., 2020), modeling the productivity of public capital in the U.S. (Ullah et al., 18 

2021), and forecasting the industrial output in the OECD countries (Bruzda, 2024).  19 

As a motivation to introduce modal regression, authors such as Kemp and Santos Silva (2012) 20 

indicate econometric analyses serving the purpose of modeling such economic variables as 21 

income, prices, and expenditures, which are characterized by positive skewness. These authors 22 

also invoke the notion of growth regression, which, according to the researchers dealing with 23 

the empirics of growth theory, should fit the majority of the data. As noted by Kemp and Santos 24 

Silva (2012), in order to realize this goal, in the absence of appropriate tools for modeling the 25 

modal value of growth rates, they rely on robust regression. 26 

Since the author of this paper is not aware of any theoretical or empirical work devoted to 27 

applications of modal regression in the fields of management and marketing, this paper aims to 28 

fill this research gap and indicate such applications jointly with their advantages and benefits. 29 

For this purpose, we present two empirical analyses on data from some publically available 30 

databases (as well as a supplementary simulation experiment), which exemplify the use of linear 31 

modal regression in logistics and marketing, showing the potential of the modal regression 32 

model in developing useful decision instruments for enterprise management. In addition,  33 

we also compare the modal and robust regression models, indicating their similarities and 34 

dissimilarities. 35 

  36 
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Further in this paper, the statistical fundamentals of the modal regression model and its 1 

relationship with the robust regression model are presented, and the above mentioned example 2 

managerial applications are discussed in detail. The last section briefly summarizes the main 3 

points of our discussion. 4 

2.  Modal regression – the statistical fundamentals 5 

In this paper, we focus is on the linear modal regression model for dependent samples in 6 

the following form: 7 

ktkt
T

ttt

tktktt
T

tt

xxyMo

xxy









...)|(

...

110

110

βxx

βx
 (1) 

where ,...2,1t  is the index denoting the consecutive time units, ty  is the dependent variable, 8 

],...,,1[ 1 kttt xxx  is a vector of independent variables, ]...,,,[ 10 kβ  is a vector of 9 

structural parameters, )|( ttyMo x  denotes the conditional modal value of ty , and t  denotes 10 

an iid sequence fulfilling the condition 0)|( ttMo   a.s., where t  is the  -algebra 11 

generated by trtskirisx  ,,,...,1},{  . Moreover, it is assumed that the conditional distribution of 12 

T
ttt y βx  is absolutely continuous, supported on the real line, and has a well-defined 13 

global mode (Ullah et al., 2022). It is allowed that the errors t  are conditionally 14 

heteroskedastic, and, furthermore, it is assumed that the process },{ tty x  is stationary and 15 

fulfills certain conditions related to its memory (the so-called mixing conditions). 16 

Having a sample )...,,1,...,,,( 1 ntxxy kttt  , in order to estimate the structural parameters, 17 

one can solve the optimization problem formulated as: 18 
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hhh
 1)(  , and    is a smooth symmetric kernel function with a weak maximum 19 

at zero, while h is its bandwidth parameter (Yao, Lee, 2014; Ullah et al., 2022). Alternatively, 20 

the estimation problem can be formulated as (Kemp, Santos Silva, 2012):  21 
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where )0(1 . The usual choice for   is the Gaussian kernel, i.e., the probability density 22 

function of the standard normal distribution. This is also the choice later in this paper.  23 
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In order to obtain consistency for the parameters of the conditional modal line,  1 

the bandwidth parameter needs to slowly converge to zero at a certain prespecified rate. 2 

Namely, it is required that, assuming n , it holds 0h  and 5nh . Then, we get  3 

(for example Yao, Li, 2014): 4 

))((ˆ 25,03 hnhO  
ββ . (4) 

The asymptotic normality result further strengthens the requirements regarding this rate of 5 

convergence. Namely, it is assumed that )1(7 Onh   (Ullah et al., 2022), which leads to the 6 

following large sample property:  7 
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and )(f  denotes the probability density function of the error term. If 07 nh , the large sample 9 

result (5) simplifies as follows: 10 
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To solve the optimization problem (2), Yao and Lee (2014) introduced a modification of 11 

the Expectation-Maximization (EM) algorithm that iteratively maximizes the expected value of 12 

the log-likelihood function. The suggested modal variation of the EM algorithm, called the 13 

Modal Expectation-Maximization (MEM) algorithm, in the case of the Gaussian kernel is 14 

equivalent to the iteratively reweighted least squares method.  15 

The computational process is as follows. First, it is assumed that we found a good robust 16 

initial estimate of β , denoted 
)0(

β̂ , as an input to the further computation procedure.  17 

Then, two types of computation steps, the so-called E-step and M-step, are repeated until 18 

convergence. These steps are as follows (Yao, Li, 2014): 19 
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M-step: Update the estimates: 21 
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In the computations later in the simulation and empirical parts of the paper, the initial 1 

estimates in the MEM algorithm are set to those obtained with the robust linear regression 2 

estimation with the Huber function. 3 

Yao and Li (2014) also derived the value of the bandwidth parameter h, which minimizes 4 

the asymptotic mean squared error (MSE) of the modal regression estimator (see the  5 

formula (9) in Yao, Li, 2014). We use this solution in our computations using the usual  6 

plugged-in estimates of the elements K and L defined in (5). In nonparametric density 7 

estimation, we rely on the method introduced in Botev et al. (2010), as suggested in the Matlab 8 

codes for modal regression made available by W. Yao. 9 

3. Modal regression vs. robust regression 10 

Popular estimators of the parameters in a regression equation, such as the least squares 11 

method, are sensitive to the presence of atypical observations in data samples. This will take 12 

place both when the atypical value concerns a certain independent variable, in which case the 13 

so-called high-leverage observation is identified, and when there is an atypical value of the 14 

response variable, in which case we talk of an outlying observation. In order to enable the proper 15 

examination of the dependence in the presence of atypical observations, one is advised to apply 16 

robust regression methods. Among the most frequently used estimations techniques from this 17 

group, the following estimation approaches can be indicated: M-estimators, GM-estimators,  18 

S-estimators, and MM-estimators (for example Hampel et al., 1986; Maronna et al., 2006). 19 

M-estimators of the parameters in a regression equation, introduced by Huber in 1973  20 

(see Huber, 1973), serve the purpose of removing or elevating the problem of atypical values 21 

in the response (the problem of large residuals). The M-estimation of the parameters in  22 

a regression line generalizes the estimation approach with the least squares method or the 23 

quantile regression method, whereas the term ‘M-estimation’ itself is an abbreviation of the 24 

phrase ‘Maximum likelihood-like estimation’. 25 

However, when the M-estimation is applied, the so-called influence function, which 26 

measures the influence of the ‘contamination’ of the distribution on the obtained estimates, 27 

turns out to be unbounded with respect to high-leverage observations. GM-estimators, which is 28 

an abbreviation of Generalized M-estimators, were introduced for the purpose of elevating the 29 

impact of high-leverage observations through appropriately defined weights reducing their 30 

influence on estimates. S-estimators of regression equations are procedures characterized by  31 

a high finite sample breakdown point. This means that they admit a large fraction of atypical 32 

observations before the estimator returns aberrant results. They are based on a robust estimation 33 

of the scale parameter, from which the name ‘S-estimator’ comes. Finally, MM-estimators are 34 
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procedures joining S-estimation (in the first step) and M-estimation (in the second step), which 1 

are able to combine the merits of S-estimators with high efficiency for the normal distribution. 2 

In the M-estimation of a regression line, one is looking for estimates of parameters of the 3 

equation in the form: 4 
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It is usually assumed that the objective function c  is convex, admits the minimum value 6 

of zero at zero and has a derivative c . The quantity ̂  is a robust estimate of the standard 7 

deviation of the error term. Its presence in the function (10) results from the fact that the 8 

estimation result obtained through the minimization of the expression (10) is not scale 9 

equivariant, that is, it depends on the measurement units used (for example Maronna et al., 10 

2006, Chapter IV). The solution to the optimization problem defined through (10) leads to the 11 

so-called studentized M-estimator.  12 

In practice, the M-estimation of the parameters of the regression equation is usually 13 

performed with the help of the function c , called score function. This takes place if the score 14 

function c  is smooth. Then, finding the minimum of (10) requires solving the equation: 15 
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The condition (11), after defining an appropriate weight function, reduces the computation 16 

procedure to the iterated weighted least squares method. 17 

Table 1.  18 
Chosen objective and score functions in robust estimation and the least squares method 19 
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Note. The constant c is usually defined as that guaranteeing 95% asymptotic efficiency for the normal distribution. 20 

Source: own elaboration. 21 
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Table 1 contains example objective and score functions used in robust estimation and 1 

compares them with the corresponding functions from the least squares estimation. Among the 2 

compared functions, the Tukey and Welsch objective functions, similar to the objective 3 

functions in modal regression estimation, are bounded. In fact, for the Gaussian kernel,  4 

the maximization problem (2) is equivalent to the non-studentized M-estimation based on the 5 

Welsch function. It should be noted, however, that robust regression serves the purpose of 6 

modeling the conditional mean value and assumes a symmetric error distribution. As indicated 7 

in the previous section, it turns out that, with a judicious definition of the bandwidth parameter 8 

h in the appropriate objective function, a consistent estimation of the parameters in the equation 9 

for the conditional mode (1) can be guaranteed even if the distribution of errors is asymmetric.  10 

4. Benefits of using modal regression 11 

Among the potential benefits of using modal regression, one can indicate the following 12 

(compare Bruzda, 2024, and references therein): 13 

 Modal regression enables measuring marginal effects for typical units in the population 14 

in a cross-section study (the response of a typical enterprise, client, worker etc.) and 15 

typical responses of a single examined unit over time in a time series scenario. 16 

 It is robust to outlying observations and tick tails of the conditional distribution. 17 

 It enables a direct calculation of modal forecasts and the most likely trajectories of the 18 

examined phenomena over time (Dimitriadis et al., 2024). 19 

 Under certain conditions, it should result in the narrowest interval forecasts and the 20 

smallest values of symmetric and bounded forecast loss functions (Yao, Li, 2014; Chen 21 

et al., 2016; Bruzda, 2024). 22 

 It can provide more accurate parameter estimates in the conditions of asymmetry of the 23 

error term (Yao, Li, 2014). 24 

Thus, it appears that the modal regression model will constitute a significant addendum to 25 

the existing analytical toolbox. The potential area of its applications in management, marketing, 26 

economics, and finance is broad, encompassing, among other things, 27 

 the evaluation of the impact of different components of marketing mix strategies on 28 

sales in order to maximize the effectiveness of promotional and advertising activities, 29 

 the computation of logistics demand forecasts evaluated with bounded and symmetric 30 

loss functions, that is, forecasts associated with limited (and similar) overstocking and 31 

understocking costs for material or distribution inventories (composed of, for example, 32 

the cost of the next transport to replenish or reduce the inventories in the production cell 33 

or the point of sale),  34 

 forecasting prices of the underlying financial instruments when using derivatives with 35 

payoff functions that depend on the price remaining within a certain band,  36 
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 macroeconomic forecasting maximizing credibility measures. 1 

To illustrate the potential of modal regression to find forecasts that minimize symmetric 2 

and bounded loss functions, the following simplified simulation experiment was conducted. 3 

The data were generated according to the model adopted in simulation experiments in Yao and 4 

Li (2014), which is as follows: 5 
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For a sample of size 120 and with 1,000 repetitions, information was collected on chosen 11 

accuracy measures for one-step ahead forecasts. The obtained values were the following: 12 

 the MSE: 20,3467 for modal regression and 17,8375 for the least squares method, 13 

 the loss function in modal estimation with the bandwidth parameter h set to an estimate 14 

of the asymptotically optimal value of h: 0,8531 for modal regression and 0,8977 for 15 

the least squares method, 16 

 the rectangular loss function of the form: 17 
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with c defined as 10% of the mean value of Y: 0,8470 for modal regression and 0,9560 18 

for the least squares method. 19 

The above experiment confirmed that modal regression is a natural solution for a single-20 

step computation of forecasts defined as values minimizing the zero-one loss or, more broadly, 21 

a symmetric and bounded loss function. Figure 1, on an example of the gamma distribution 22 

with the mean value of 6 and the modal value of 5, shows that this may occur, in particular,  23 

if the distribution of forecast errors is strongly unimodal, and the constant c in the loss function 24 

(12) does not take too large a value. 25 

 26 

Figure 1. Symmetric intervals of the same width around the mode and mean.  27 

Source: own elaboration. 28 



The modal regression model… 85 

5. Empirical modal regression models and their applications  1 

Now, we will present two illustrative applications of the modal regression model based on 2 

certain real datasets. The first example application concerns modeling the nominal value of  3 

an industrial process, assuming that this value depends on the conditions characterizing this 4 

process, and more precisely, settings of the device used in the process. Also, we assume that 5 

the conditional distribution of the outcome of the process can be asymmetric and even 6 

multimodal, but it possesses a well-defined global mode. Under such circumstances,  7 

it is expected that modal regression can be employed to model the nominal value of the process 8 

in a way guaranteeing that the distribution of the outcome is highly concentrated around this 9 

nominal value. 10 

In the example, we use a dataset available on the Kaggle webpade (Guetout, n.d.). It consists 11 

of 125 observations on four variables. The first is called ‘roughness’ (denoted further as R) and 12 

is considered an important outcome of a turning process since it impacts on the life cycle of the 13 

produced steel elements. Thus, this particular outcome of the production process remains of 14 

interest to the statistical process control and general quality management. In addition,  15 

the dataset includes variables describing the production process such as the cutting depth (X1), 16 

feed (X2) and cutting and turning speed (X3). 17 

On this dataset, we estimated parameters of three linear regression models, namely,  18 

the ordinary conditional mean equation (estimated by least squares), the quantile regression 19 

equation for quantile of order 0.5, that is, median regression (estimated by least absolute 20 

deviations), and the modal regression line (estimated as described in the previous sections). 21 

After removing the variable X1, which turned out to be insignificant, the following estimation 22 

results were obtained: 23 

3
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where iR̂ , i = 1, 2, 3, denote the theoretical values of R from the three models,  24 

and ],,[ 321 XXXX  is the vector of exogenous variables.  25 

The estimation results show that the regression coefficients in the equation for the mean 26 

value (13) are about two times larger than those of the modal regression equation (15), whereas 27 

the corresponding coefficients in the median regression line (14) deviate from those in the 28 

equation (15) to a lesser extent. But even more important are the shapes of the error distributions 29 

in the estimated regressions. Figure 2 presents histograms of the residuals from the three 30 

equations, jointly with a histogram for the dependent variable R. The histograms indicate that 31 
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the residuals from the modal regression model are highly concentrated around zero, much more 1 

than in the case of least squares estimation and also more than in the case of median regression, 2 

confirming the expectation formulated at the beginning of this empirical study. 3 

 4 

 5 

Figure 2. Histograms of the dependent variable and the residuals. Upper left panel – the dependent 6 
variable, upper right panel – residuals from least squares estimation, bottom left panel – residuals from 7 
median regression, bottom right panel – residuals from modal regression.  8 

Source: own elaboration. 9 

To confirm and quantify this observation, for each of the models, we also found the 10 

percentages of residuals with absolute values no greater than a certain constant c,  11 

that is,   


n

t ittn
cRR

1
1 ˆ1 . Such defined quantities can also be computed as 12 

 
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t ittn
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1
1 )ˆ(1  , where )(  is the loss function defined in (12). The results of these 13 

computations for selected values of c are presented in Table 2. The juxtaposition in  14 

Table 2 shows that, if the deviations from the nominal value of R which are less in magnitude 15 

than c enable classifying the output of the turning process as the highest quality product,  16 

the modal regression line, when used in the prediction mode, could be used to model the 17 

nominal value of the production process in a way guaranteeing the maximum share of products 18 

meeting the highest quality requirements in the total production. 19 

  20 
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Table 2.  1 
Shares of residuals with absolute values less than c (in %) 2 

c Mean value regression Median regression Modal regression 

0,25 17,6 25,6 33,6 

0,5 26,4 45,6 52,0 

0,75 41,6 62,4 67,2 

1 56,8 72,0 78,4 

1,25 65,6 80,8 80,8 

Source: own computations. 3 

The second discussed application of modal regression is inspired by the marketing mix 4 

concept. The dataset used in this empirical illustration comes from the Dominick’s Finer Foods 5 

database maintained by the Kilts Center for Marketing at the University of Chicago’s Booth 6 

School of Business, which part is available in the bayesm R package of Rossi (2019).  7 

From this package, we took the canned food dataset covering sales volumes of seven brands, 8 

jointly with the corresponding potential explanatory variables such as display activity (being  9 

a measure of the use of so-called display marketing), logarithms of retail prices, and logarithms 10 

of wholesale prices. The data have the form of (non-consecutive) weekly observations 11 

aggregated to the chain level. The number of available observation is 338. The estimation 12 

results presented here concern the brand no. seven (HH Chunk Lite 6.5 oz.). Figure 3 depicts 13 

the histogram of the sales volume of this brand, which shows that the examined distribution is 14 

strongly positively skewed. This is due to occasional bulk (wholesale) purchases.  15 

Below we present the empirical marketing mix models for the brand analyzed, reduced to 16 

significant parameters. As in the previous example, three estimation methods were applied. 17 

PwPSES
)973,5()562,5()91,3(

1 848,37090,46667,28)|(ˆˆ



 X , (16) 

PSeMS
)859,0(

2 921,23)|(ˆˆ



 X , (17) 

PDSoMS
)2198,2()6316,0()6034,0(

3 6421,95372,39934,2)|(ˆˆ



 X , (18) 

where S denotes the sales volume in thousands, D is a measure of the display activity,  18 

P is the logarithm of the retail price, Pw is the logarithm of the wholesale price, ],,[ PwPDX19 

, and iŜ , i = 1, 2, 3, are the theoretical values from the regression models. 20 
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 1 

Figure 3. Histogram of the sales volume.  2 

Source: own elaboration. 3 

The estimation results show that the display activity variable is not significant in the 4 

equations for the conditional mean and median (16) – (17), whereas it is highly significant in 5 

the equation for the conditional mode (18), that is, it impacts on sales in a typical low demand 6 

week and can be used in explaining the largest part of the distribution of sales. By contrast, the 7 

wholesale price turns out to be significant exclusively in the equation for the mean, which says 8 

that this variable may be employed to describe the upper part of the distribution of sales. 9 

The above analysis shows that modal regression makes it possible to build empirical 10 

marketing mix models without the need for market segmentation (in a sense, also saving 11 

degrees of freedom in estimation) since it naturally concentrates on the most typical sales 12 

volumes, reflecting the demand of the target consumer group.  13 

In addition, the empirical modal regression model, such as that given in the equation (18), 14 

will make it possible to forecast the most likely volume of sales defined as that associated with 15 

the maximum of the conditional probability density function (for example Dimitriadis et al., 16 

2024). Let us express such a forecast as PaDaaS 210
ˆ   for certain positive constants 0a , 17 

1a , and 2a . Then, the corresponding modal forecast of the company’s profit can be written as: 18 

,)()(

ˆ)(),(

0101221201
2

2

021

ccaDcacPcaaPDaPa

cDcScPPDProfit




 (19) 

where 0c , 1c , and 2c  denote, respectively, the fixed cost of the marketing department, the unit 19 

production (or purchasing) and distribution cost of the goods, and the unit cost of the display 20 

activity. The function (19) has the following partial derivatives: 21 

 120121221 2,, caaDaPacacPa
P

Profit

D

Profit

















, (20) 

whereas its hessian is given as: 22 













21

1

2

0
),(

aa

a
PDH . (21) 



The modal regression model… 89 

Since the hessian (21) is negative semidefinite, the function (19) is concave, and, thus,  1 

it attains its (unique) global maximum at the stationary point of the form: 2 

.
)()(2

,

2
1

12011222

1

122

a

caaacaca
D

a

cac
P







 (22) 

The solution (22) should be of help to the company in optimizing its marketing mix strategy 3 

in relation to the target consumer group. 4 

6. Conclusions 5 

The modal regression model, introduced by Kemp and Santos Silva (201) and Yao and Li 6 

(2014) and developed further, among others, by Kemp et al. (2020) and Ullah et al. (2022),  7 

is a statistical concept with a broad range of potential applications. However, to the best of our 8 

knowledge, empirical applications of this concept remain somewhat underdeveloped and are 9 

limited so far exclusively to certain macro- and microeconomic phenomena. In this paper,  10 

for the first time in the literature, we have drawn attention to some of possible uses of modal 11 

regression in enterprise management, and more precisely, in logistics and marketing 12 

management. As has been shown in the paper, the empirical modal regression model should 13 

help to develop decision instruments which can be utilized in demand forecasting (and logistics 14 

planning), managing the quality of industrial processes, and planning marketing mix strategies. 15 

This, however, certainly does not exhaust the topic. We believe that this direct statistical 16 

approach can be beneficial to managers in many areas of an enterprise and in many businesses. 17 

For this reason, it is recommended to include this tool in the managerial statistical toolbox. 18 
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