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Purpose: In many real-life service systems an arriving customer can obtain different-type 10 

processing in dependence on its preferences or requirements. In the paper, a model of a service 11 

system with finite waiting room and various types of processing is proposed.  12 

Findings: Analytic method based on integral equations and matrix approach is applied to find 13 

a representation for the Laplace transform of the customer waiting time distribution conditioned 14 

by the number of customers accumulated in the waiting room initially. Numerical examples are 15 

attached as well. 16 

Research limitations/implications: The current study focuses on the analysis of a queueing 17 

system with a finite waiting room and multi-type service characteristics under specific 18 

assumptions, such as Poisson input streams and hyper-exponential service times.  19 

The generalizability of the results may be limited to scenarios adhering to these conditions. 20 

Additionally, the transient state analysis primarily addresses fixed initial conditions,  21 

which could restrict its applicability to dynamically changing systems or environments.  22 

Further research could explore extensions incorporating alternative arrival patterns, varying 23 

buffer sizes, and adaptive service mechanisms to improve real-world applicability. 24 

Practical implications: The findings of this study offer valuable insights for the design and 25 

optimization of service systems with limited waiting room capacities, such as healthcare 26 

facilities, production lines, and network routers. By understanding the transient waiting time 27 

distribution, system administrators can better predict potential bottlenecks and implement 28 

strategies to minimize customer delays and service interruptions. The mathematical framework 29 

can guide decision-making regarding buffer sizing, service process allocation, and workload 30 

distribution to improve overall service quality and operational efficiency. Additionally,  31 

the approach may aid in the development of real-time control mechanisms for systems 32 

experiencing fluctuating demand or unexpected surges in traffic. 33 

Social implications: Efficient queue management is crucial in various sectors that directly 34 

impact society, such as healthcare, public transportation, and digital services. By minimizing 35 

waiting times, the study contributes to enhancing customer satisfaction, reducing frustration, 36 

and improving overall well-being. In healthcare, optimized waiting room capacities can lead to 37 

faster service delivery, potentially improving patient outcomes. Similarly, in public services 38 

and transportation, reducing delays helps to maintain social trust and ensure equitable access. 39 
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The study’s findings can also support sustainable development by reducing resource wastage 1 

and enhancing system resilience in critical infrastructures, benefiting communities at large. 2 

Originality/value: This study presents a novel analytical approach to evaluating the transient 3 

waiting time distribution in finite-buffer queueing systems, employing integral equations and  4 

a matrix-based solution framework. Unlike many existing studies focused primarily on steady-5 

state analysis, this research addresses the system’s transient behavior, offering a more 6 

comprehensive understanding of queue dynamics during non-equilibrium conditions.  7 

The consideration of multi-type service times modeled by hyper-exponential distributions 8 

further enhances the model’s applicability to diverse real-world service processes. The findings 9 

provide practical tools for optimizing queue performance in various industries, highlighting the 10 

study’s contribution to both theoretical advancements and practical implementations. 11 

Keywords: from Poisson stream; queue; service station; time-dependent analysis; waiting time. 12 

Category of the paper: Research paper. 13 

1. Introduction 14 

Nowadays, the customer service process is becoming more and more personalized.  15 

This is of course related to the conditions of market competition in which companies from the 16 

service industry operate. The desire to attract as many customers as possible forces these 17 

companies to make the service process much more flexible and adapt it to certain specific 18 

requirements and preferences of customers. As a consequence, the servicing of individual 19 

customers may vary significantly, in particular, these differences often relate to the duration of 20 

the service itself. 21 

Queueing systems are a very convenient mathematical tool that allows for practical 22 

modeling of the behavior of many real service stations. Monitoring of phenomena typical for 23 

models related to customer service, such as the accumulation of customers waiting for service, 24 

the status of the queue of customers waiting for service, the waiting time for a single customer 25 

to start its service, is possible by analyzing the stochastic characteristics of the relevant 26 

queueing models, which approximate the behavior of the real system. Of particular importance 27 

here are queueing systems with limited capacities of the so-called waiting rooms, i.e. buffers 28 

accumulating customers waiting for service. Indeed, in practice, the size of the waiting room is 29 

limited in most real service systems. This is, for example, in the case of patients waiting for  30 

a doctor’s appointment, in the case of components awaiting processing at a specific point in the 31 

production line, or in the case of network switch buffers (e.g. Internet routers) in IoT traffic. 32 

One of the most essential stochastic characteristics of each queueing model is the 33 

probability distribution of the customer waiting time to start its service (queueing delay, virtual 34 

waiting time). This characteristic is crucial from the point of view of ensuring the appropriate 35 

level of customer service quality (QoS), and affects the cost of system operation, because 36 

keeping customers waiting for service in the buffer is often expensive. Moreover, long waiting 37 

times can lead to losses of customers due to buffer overflow. 38 
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The literature on queueing models and their practical use in modeling real service systems 1 

is huge an,d constantly growing. This applies, in particular, to works devoted to the distribution 2 

of customer waiting time. Therefore, the following literature review has been prepared taking 3 

into account the most important, in the author’s opinion, items, research directions and 4 

applications in this field published in recent years. 5 

In (Bellomo, Brezzi, 2020) a discussion on new trends and challenges in traffic, crowds, 6 

and dynamics of self-organized particles can be found, in which queueing theory results can be 7 

essentially used. A new approach for computing waiting time distribution in finite-capacity 8 

queueing models with Markov arrivals can be found in Chaudhry et al. (2023). In Kim (2020) 9 

a priority queue with Poisson arrivals is analyzed. Waiting time distributions for different class 10 

of customers are investigated there. The problem of bus delays is studied in Sun et al. (2015) 11 

by using queueing theory and Markov chain approach. The problem of estimating entropy 12 

production from the point of view of waiting time distributions is discussed in Skinner, Dunkel 13 

(2021). In Lee et al. (2020) queueing delay distribution in the discrete-type multi-server queue 14 

with batch arrivals of customers is investigated. The problem of the impact of skewness of 15 

interarrival and service times on the waiting time distribution is studied in Romero-Silva et al. 16 

(2020). In Walraevens et al. (2022) asymptotics of the waiting time distributions in the 17 

accumulating queue with priority is considered. A rarely used LIFO processing discipline with 18 

the auto-correlated input stream in MAP/G/1/N-type model is considered in Dudin et al. (2017), 19 

where the representation for the stationary queueing delay distribution is found. Waiting time 20 

distributions in an M/G/1 retrial queue with two classes of customers and in a correlated model 21 

with exponential interarrival and service times are analyzed in Kim, Kim (2017, 2018), 22 

respectively. In Baek et al. (2016) explicit-form representations for transient waiting time 23 

distribution in the M/D/1 queue can be found. The waiting time distribution in the  24 

D-BMAP/G/1 queueing model is investigated in Samanta (2020). In Bratiychuk, Kempa (2003) 25 

a new approach for studying transient characteristics, e.g. waiting time distribution,  26 

in a general-type batch-arrival queueing model is proposed. The method is based on the 27 

factorization technique and integral equations. Stationary analysis of key performance measures 28 

in M/G/n-type model with bounded capacity and packet dropping is done in Tikhonenko, 29 

Kempa (2016). In Kempa (2010) the compact-form representation for the actual waiting time 30 

in the GI/G/1-type model with batch arrivals is obtained in the transient state of the system 31 

operation. A model of a wireless sensor network node operation with a modified threshold-type 32 

energy saving mechanism is proposed in Kempa (2019). A proposal of a weight queue active 33 

queue management which is based on dynamic monitoring of the current queue size can be 34 

found in (Baklizi, 2020) as a tool for reduction congestions at router buffers. In Xie et al. (2023) 35 

the problem of adapting of queueing systems to changing model conditions,  36 

such as e.g. fluctuations in the number of devices or message sizes, is discussed in the context 37 

of using IoT edge computing. The so-called message queues being a way of asynchronous 38 

communication for software components or applications by using a shared buffer are 39 
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investigated in Maharjan et al. (2023). The mechanism of Active Queue Management and its 1 

impact on queueing characteristics is considered in Marek et al. (2022). In Solaiappan et al. 2 

(2023) an interesting proposal of using of signal distribution control algorithm in minimizing 3 

the vehicle queue waiting time can be found, which fits the hot topic of smart cities. In Dimakou 4 

et al. (2015) the problem of the estimation of the waiting time distribution in public health care 5 

is discussed. Queueing delay distribution for dynamic pickup and delivery problems is analyzed 6 

in Vonolfen, Affenzeller (2016). In Bounkhel et al. (2020) a model with server breakdowns is 7 

investigated. In Arita, Schadschneider (2015) an interesting queueing model in a microscopic 8 

level is considered. 9 

Most of the results obtained for stochastic characteristics of queueing models concern the 10 

stationary (steady) state of the system (the case in which time parameter t tends to infinity).  11 

In practice, however, the steady state does not always describe the functioning of the system 12 

well. For example, each time the service station fails, the system has to stabilize again,  13 

and the indicator of the system operation is then the transient (non-stationary) state. The same 14 

applies to the analysis of the system operation just after its start-up or just after changing the 15 

traffic control mechanism, or the size of the accumulating buffer. 16 

The article analyzes the non-stationary (transient, at a fixed moment t) probability 17 

distribution of the customer waiting time in a queueing model with a Poisson input stream of 18 

customers and limited waiting room capacity. The traditional, classic FIFO service discipline 19 

is applied, according to which customers are served in the order in which they appear in the 20 

system. Customers are offered various “conditions” of service, hence the service time for  21 

a single customer is modeled using a hyper-exponential distribution with fixed parameters.  22 

In Section 2, the considered queueing model is described in detail mathematically.  23 

In Section 3, we construct the system of integral equations governing the transient waiting time 24 

distribution conditioned by the initial state of the system, i.e. the number of customers waiting 25 

for service at the opening (t = 0). In Section 4, we write a system of linear equations for Laplace 26 

transforms corresponding to the original one, represent it in a matrix form and state the formula 27 

for its general solution. Some supplementary results can be found in Section 5. Section 6 28 

contains results of numerical experiments illustrating sensitivity of the transient waiting time 29 

distribution on key predefined model parameters. 30 

2. Mathematical model  31 

In the paper, we study a single-channel queueing model with a multi-type service process. 32 

Customers arrive into the service station according to a Poisson process with given rate a.  33 

The system is equipped with a finite-capacity buffer (waiting time) for accumulating entering 34 

customers which must wait for start the service process. The buffer capacity (volume) equals 35 
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N-1 places that is a non-random (fixed) value, so the maximum number of customers which are 1 

allowed to be present in the system simultaneously equals N (the buffer capacity plus one place 2 

for the customer being processed). In the case an arriving customer finds the waiting time being 3 

full, it is being lost (it leaves the system immediately without service). The processing is 4 

organized according to the natural FIFO (First-In-First-Out) service discipline. 5 

In dependence on their preferences or requirements the entering customers may obtain 6 

different-type processing. So, we assume that the service time of a single customer is hyper-7 

exponentially distributed with parameters  8 

(𝑏1, 𝑝1), . . . , (𝑏𝑘, 𝑝𝑘), (1) 

where 𝑏𝑖 > 0, 𝑝𝑖 ≥ 0 for 𝑖 = 1, . . . , 𝑘, and ∑𝑘𝑖=1 𝑝𝑖 = 1. 9 

Thus, the service time of an arriving customer has exponential distribution with mean 𝑏𝑖
−1 10 

with probability 𝑏𝑖
−1, where 𝑖 = 1, . . . , 𝑘, i.e. a customer can obtain k different types of service 11 

in the considered model, where k is fixed. 12 

In consequence, the CDF (cumulative distribution function) and the PDF (probability 13 

density function) of single customer service time are defined, respectively, as follows: 14 

 𝐵(𝑡) =
𝑑𝑒𝑓

∑𝑘𝑖=1 𝑝𝑖(1 − 𝑒
−𝑏𝑖𝑡) (2) 

and  15 

 𝑏(𝑡) =
𝑑𝑒𝑓

∑𝑘𝑖=1 𝑝𝑖𝑏𝑖𝑒
−𝑏𝑖𝑡, (3) 

where 𝑡 > 0. 16 

One of the key characteristics of any queueing system is the so-called queueing delay 17 

defined for any fixed time t. The queueing delay (also known as the virtual waiting time for 18 

service) at fixed time t expresses the time that a customer appearing in the system at exactly 19 

time t would have to wait for the start of the service. Obviously, the moment t need not be  20 

a real customer arrival moment, hence the term “virtual”. 21 

Denoting by 𝜏(𝑡)the virtual waiting time (queueing delay) at time 𝑡, let us introduce the 22 

following notation:  23 

𝑇𝑛(𝑡, 𝑥) =
𝑑𝑒𝑓

𝐏{𝜏(𝑡) > 𝑥 | initialbufferstate = 𝑛}, (4) 

where 𝑡 > 0, 𝑥 > 0 and 𝑛 ∈ {0, . . . , 𝑁}. 24 

Indeed, 𝑇𝑛(𝑡, 𝑥) stands for the probability that the waiting time of a customer arriving at 25 

time t exceeds x on condition that the system initially (at time 𝑡 = 0) contains n customers 26 

accumulated in the buffer (waiting room) exactly. Evidently, for fixed t the probability 27 

𝑇𝑛(𝑡, 𝑥)is dependent on n essentially. 28 

  29 
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3. Time-dependent equations  1 

In this section, we establish a system of Volterra-type integral equations for conditional 2 

virtual delay distribution defined in (4) utilizing Markov moments in the evolution of the 3 

considered queueing system. Indeed, due to memoryless property of interarrival times, 4 

consecutive departure moments (time epochs at which customers complete their processing and 5 

leave the system) are renewal (Markov) moments in the evolution of the system. 6 

Let us begin with the case of the system being empty at the opening (at time 𝑡 = 0). 7 

Denoting by y the first arrival moment after the starting of the system, we obtain the following 8 

equation:  9 

𝑇0(𝑡, 𝑥) = 𝑎∫
𝑡

0

𝑒−𝑎𝑦𝑇1(𝑡 − 𝑦, 𝑥)𝑑𝑦. (5) 

Indeed, if the first arrival moment y precedes t then, obviously, the probability that the 10 

waiting time of a “virtual” customer entering exactly at time t exceeds x is equal to the 11 

analogous probability but for the system beginning its operation with one customer present and 12 

calculated at time t-y. If the first customer arrives after time t then the probability that the 13 

waiting time at time t exceeds x equals 0 (at time t the system is still empty). 14 

Similarly, if the accumulating buffer contains at least one customer at the opening epoch, 15 

denoting by y the first service completion epoch (that is a renewal moment in the system 16 

evolution) and applying the formula of total probability, we get 17 

 𝑇𝑛(𝑡, 𝑥) = ∑
𝑁−𝑛−1
𝑗=0 ∫

𝑡

0
𝑇𝑛+𝑗−1(𝑡 − 𝑦, 𝑥)

(𝑎𝑦)𝑗

𝑗!
𝑒−𝑎𝑦 ∑𝑘𝑖=1 𝑝𝑖𝑏𝑖𝑒

−𝑏𝑖𝑦𝑑𝑦 

+ ∑

∞

𝑗=𝑁−𝑛

∫
𝑡

0

𝑇𝑁−1(𝑡 − 𝑦, 𝑥)
(𝑎𝑦)𝑗

𝑗!
𝑒−𝑎𝑦∑

𝑘

𝑖=1

𝑝𝑖𝑏𝑖𝑒
−𝑏𝑖𝑦𝑑𝑦 + 𝜃𝑛(𝑡, 𝑥), 

(6) 

where  18 

𝜃𝑛(𝑡, 𝑥) = ∑

𝑁−𝑛−1

𝑘=0

(𝑎𝑡)𝑘

𝑘!
𝑒−𝑎𝑡∫

∞

𝑡

𝐵
(𝑛+𝑗−1)⋆

(𝑥 − 𝑦 + 𝑡)∑

𝑘

𝑖=1

𝑝𝑖𝑏𝑖𝑒
−𝑏𝑖𝑦𝑑𝑦. (7) 

In the formula (7) we use the notation 𝐵
𝑖⋆
(𝑢) = 1 − 𝐵𝑖⋆(𝑢), where 𝐵𝑖⋆(⋅) stands for the  19 

i-fold Laplace-Stieltjes convolution of the CDF 𝐵(⋅) with itself which is defined as follows:  20 

𝐵0⋆(𝑡) = 1, 𝐵1⋆(𝑡) = 𝐵(𝑡), 𝐵𝑗⋆(𝑡) = ∫
𝑡

0

𝐵(𝑗−1)⋆(𝑡 − 𝑢)𝑑𝐵(𝑢), (8) 

where 𝑗 ≥ 2. 21 

The first summand on the right side of (6) refers to the situation in that the first customer 22 

leaves the system at time 𝑦 < 𝑡 and, simultaneously, just before the moment (y) there is at least 23 

one free place in the accumulation buffer. The second summand describes a similar situation 24 
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with the difference that just before y the buffer is completely saturated. The last summand on 1 

the right side of (6) relates to the case in that the first customer departs at time 𝑦 > 𝑡.  2 

In this situation, if the number of arrivals before t is equal 𝑗 ≤ 𝑁 − 𝑛 − 1, then the probability 3 

that the waiting time of a customer arriving to the system at time t is greater than x is equal to 4 

the probability that the total service time of 𝑛 + 𝑗 − 1 customers exceeds 𝑥 − 𝑦 + 𝑡  5 

(the component 𝐵
(𝑛+𝑗−1)⋆

(𝑥 − 𝑦 + 𝑡). If the buffer is saturated at time t, the “virtual” customer 6 

entering at this moment is lost and hence we assume that its waiting time equals 0. 7 

4. Linear system of equations for Laplace transforms and its matrix-form 8 

solution  9 

In this section, we establish a system of linear equations corresponding to (5)-(6) written 10 

for Laplace transforms of the conditional waiting time distribution. Next we transform this 11 

system into a matrix form and obtain the representation for the solution. 12 

So, introduce the following notation:  13 

𝑇̂𝑛(𝑠, 𝑥) =
𝑑𝑒𝑓

∫
∞

0

𝑒−𝑠𝑡𝑇𝑛(𝑡, 𝑥)𝑑𝑡 (9) 

where R𝑒(𝑠) > 0. 14 

Due to the fact that  15 

𝑎∫
∞

𝑡=0

𝑒−𝑠𝑡𝑑𝑡 ∫
𝑡

𝑦=0

𝑒−𝑎𝑦𝑇1(𝑡 − 𝑦, 𝑥)𝑑𝑦 

= 𝑎∫
∞

𝑦=0

𝑒−(𝑎+𝑠)𝑦𝑑𝑦∫
∞

𝑡=𝑦

𝑒−𝑠(𝑡−𝑦)𝑇1(𝑡 − 𝑦, 𝑥)𝑑𝑡 =
𝑎

𝑎 + 𝑠
𝑇̂1(𝑠, 𝑥), 

(10) 

we obtain from (5) the following equation:  16 

𝑇̂0(𝑠, 𝑥) =
𝑎

𝑎 + 𝑠
𝑇̂1(𝑠, 𝑥). (11) 

Let us observe that, changing the order of integration, the following representation is true 17 

(compare to the right side of (6)):  18 

∫
∞

𝑡=0

𝑒−𝑠𝑡𝑑𝑡∫
𝑡

𝑦=0

𝑇𝑟(𝑡 − 𝑦, 𝑥)
(𝑎𝑦)𝑗

𝑗!
𝑒−𝑎𝑦𝑝𝑖𝑏𝑖𝑒

−𝑏𝑖𝑦𝑑𝑦 

= 𝑝𝑖𝑏𝑖∫
∞

𝑦=0

𝑒−(𝑎+𝑏𝑖+𝑠)𝑦
(𝑎𝑦)𝑗

𝑗!
𝑑𝑦∫

∞

𝑡=𝑦

𝑒−𝑠(𝑡−𝑦)𝑇𝑟(𝑡 − 𝑦, 𝑥)𝑑𝑡 

=
𝑝𝑖𝑏𝑖

𝑎 + 𝑏𝑖 + 𝑠
(

𝑎

𝑎 + 𝑏𝑖 + 𝑠
)
𝑗

𝑇̂𝑟(𝑠, 𝑥). 

(12) 

 19 
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Denoting  1 

𝛽𝑗(𝑠) =
𝑑𝑒𝑓

∑

𝑘

𝑖=1

𝑝𝑖𝑏𝑖
𝑎 + 𝑏𝑖 + 𝑠

(
𝑎

𝑎 + 𝑏𝑖 + 𝑠
)
𝑗

, (13) 

and (see (7))  2 

𝜃𝑛(𝑠, 𝑥) =
𝑑𝑒𝑓

∫
∞

0

𝑒−𝑠𝑡𝜃𝑛(𝑡, 𝑥)𝑑𝑡, (14) 

we can rewrite equations (6) in terms of Laplace transforms as follows: 3 

𝑇̂𝑛(𝑠, 𝑥) = ∑

𝑁−𝑛−1

𝑗=0

𝛽𝑗(𝑠)𝑇̂𝑛+𝑗−1(𝑠, 𝑥) + 𝑇̂𝑁−1(𝑠, 𝑥) ∑

∞

𝑗=𝑁−𝑛

𝛽𝑗(𝑠) + 𝜃𝑛(𝑠, 𝑥), (15) 

where 𝑛 ∈ {1, . . . , 𝑁}. 4 

Now let us transform the system of linear equations (11) and (15) into a matrix form by 5 

defining appropriate functional matrices. 6 

Let start with introducing a functional square matrix 𝐁(𝑠) = (𝑏𝑖,𝑗(𝑠)) of size (𝑁 + 1) ×7 

(𝑁 + 1) of coefficients of the system (11) and (15). 8 

Successive entries of the first row of this matrix we define as follows:  9 

𝑏1,𝑗(𝑠) =
𝑑𝑒𝑓

{

1, for 𝑗 = 1,

−
𝑎

𝑎 + 𝑠
, for 𝑗 = 2,

0, for 𝑗 ∈ {3, . . . , 𝑁 + 1}.

 (16) 

Next, for 𝑖 = 2, . . . , 𝑁 − 1let us denote  10 

𝑏𝑖,𝑗(𝑠) =
𝑑𝑒𝑓

{
  
 

  
 
−𝛽0(𝑠), for 𝑗 = 𝑖 − 1,
1 − 𝛽1(𝑠), for 𝑗 = 𝑖,
𝛽𝑗−𝑖+1(𝑠), for 𝑗 ∈ {𝑖 + 1, . . . , 𝑁 − 1},

− ∑

∞

𝑘=𝑁−𝑖+1

𝛽𝑘(𝑠), for 𝑗 = 𝑁,

0, for 𝑗 = 𝑁 + 1.

 (17) 

The penultimate row of the matrix 𝐁(𝑠) has the following entries:  11 

𝑏𝑖,𝑗(𝑠) =
𝑑𝑒𝑓

{
  
 

  
 
−𝛽0(𝑠), for 𝑗 = 𝑖 − 1,
1 − 𝛽1(𝑠), for 𝑗 = 𝑖,
𝛽𝑗−𝑖+1(𝑠), for 𝑗 ∈ {𝑖 + 1, . . . , 𝑁 − 1},

− ∑

∞

𝑘=𝑁−𝑖+1

𝛽𝑘(𝑠), for 𝑗 = 𝑁,

0, for 𝑗 = 𝑁 + 1.

 (18) 

 12 

  13 
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Finally, let us define entries of the last row as follows:  1 

𝑏𝑁+1,𝑗(𝑠) =
𝑑𝑒𝑓

{
 
 

 
 
0, for 𝑗 ∈ {1, . . . , 𝑁 − 1},

−∑

∞

𝑘=0

𝛽𝑘(𝑠), for 𝑗 = 𝑁,

1, for 𝑗 = 𝑁 + 1.

 (19) 

In consequence, the functional matrix of coefficients has the following shape:  2 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1 −

𝑎

𝑎 + 𝑠
0 0 … 0 0 0

−𝛽0(𝑠) 1 − 𝛽1(𝑠) −𝛽2(𝑠) −𝛽3(𝑠) … −𝛽𝑁−2(𝑠) − ∑

∞

𝑘=𝑁−1

𝛽𝑘(𝑠) 0

0 −𝛽0(𝑠) 1 − 𝛽1(𝑠) −𝛽2(𝑠) … −𝛽𝑁−3(𝑠) − ∑

∞

𝑘=𝑁−2

𝛽𝑘(𝑠) 0

0 0 −𝛽0(𝑠) 1 − 𝛽1(𝑠) … −𝛽𝑁−4(𝑠) − ∑

∞

𝑘=𝑁−3

𝛽𝑘(𝑠) 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 0 … −𝛽0(𝑠) 1 −∑

∞

𝑘=1

𝛽𝑘(𝑠) 0

0 0 0 0 … 0 −∑

∞

𝑘=0

𝛽𝑘(𝑠) 1
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. (20) 

Let us define one-column matrices of unknown functions and free terms with 𝑁 + 1 rows 3 

in the following way:  4 

𝐓(𝑠, 𝑥) =
𝑑𝑒𝑓

[𝑇̂0(𝑠, 𝑥), … , 𝑇̂𝑁(𝑠, 𝑥)]
𝑇
 (21) 

and  5 

𝐊(𝑠, 𝑥) =
𝑑𝑒𝑓

[𝜃0(𝑠, 𝑥), … , 𝜃𝑁(𝑠, 𝑥)]
𝑇
, (22) 

respectively, where we assume additionally that 𝜃0(𝑠, 𝑥) = 0 (compare the right side of the 6 

equation (11)). 7 

Referring to (20)-(22), the linear system of equations (11), (15) can be written as follows: 8 

𝐁(𝑠)𝐓(𝑠, 𝑥) = 𝐊(𝑠, 𝑥). (23) 

The representation for the solution of the system (23) can be given in the following matrix 9 

form: 10 

𝐓(𝑠, 𝑥) = 𝐁(𝑠)−1𝐊(𝑠, 𝑥). (24) 

  11 
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5. Supplementary results 1 

In this section, we present some supplementary results related to the considered model, 2 

namely the explicit form formula for the Laplace transform of the waiting time distribution in 3 

the case of the system without waiting room, the representation for the stationary waiting time 4 

distribution and its mean value. 5 

5.1. The model without waiting room  6 

A special case of the considered queueing model is that without waiting time in which the 7 

arriving customers can wait for starting their processing, i.e. 𝑁 = 1. Then we get the following 8 

simplified formulae for key functional matrices:  9 

𝐁(𝑠) =

[
 
 
 
 1 −

𝑎

𝑎 + 𝑠

−∑

∞

𝑘=0

𝛽𝑘(𝑠) 1
]
 
 
 
 

 (25) 

and  10 

𝐊(𝑠, 𝑥) =
𝑑𝑒𝑓

[𝜃0(𝑠, 𝑥), 𝜃1(𝑠, 𝑥)]
𝑇
= [0,0]𝑇 . (26) 

Because  11 

|𝐁(𝑠)| = 1 −
𝑎

𝑎 + 𝑠
∑

∞

𝑘=0

𝛽𝑘(𝑠) ≠ 0, (27) 

the only solution of the system (11), (15) is the zero solution. Indeed, if an arriving customer 12 

find the server busy with processing it is lost, so its waiting time equals 0. Similarly, an arriving 13 

customer that finds the system empty is being processed without waiting, hence its waiting time 14 

is 0, too.  15 

5.2. Stationary waiting time distribution  16 

Obviously, since the considered queueing model has finite buffer capacity, the stationary 17 

waiting time distribution exists and, moreover, it is independent on the initial buffer state, 18 

 i.e. the number of customers accumulated in the waiting room at the starting epoch.  19 

The formula for the stationary waiting time distribution can then be found by using the 20 

Tauberian theorem. 21 

Denoting  22 

𝑇(𝑥) =
𝑑𝑒𝑓

lim
𝑡→∞

𝑇𝑛(𝑡, 𝑥) = lim
𝑡→∞

𝐏{𝜏(𝑡) > 𝑥 | initial buffer state = 𝑛}, (28) 

we obtain  23 
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𝑇(𝑥) = lim
𝑠↓0
𝑠 ⋅ 𝑇̂𝑛(𝑠, 𝑥) = lim

𝑠↓0
𝑠∫

∞

0

𝑒−𝑠𝑡𝐏{𝜏(𝑡) > 𝑥 | initial buffer state = 𝑛}𝑑𝑡, (29) 

for arbitrary 𝑥 ≥ 0. 1 

5.3. Mean waiting time in equilibrium 2 

Denoting by τ the waiting time in the stationary state (equilibrium), its mean value can be 3 

calculated as follows: 4 

 𝐄(𝜏) = ∫
∞

0
𝐏{𝜏 > 𝑥}𝑑𝑥 = ∫

∞

0
𝑇(𝑥)𝑑𝑥, (30) 

where the formula for 𝑇(𝑥) is given in (29). 5 

6. Numerical results 6 

In this section, we present the results of numerical experiments in which the impact of the 7 

input parameters of the considered system on the distribution of the waiting time for service, 8 

such as the intensity of customer arrivals, parameters determining the distribution of the service 9 

time of a single customer, as well as the initial state of the system. Four different scenarios were 10 

considered, in which 𝑁 = 2 and the assumption that the service station offers three different 11 

types of service described with exponential distributions with different probabilities, so values  12 

(𝑏1, 𝑝1), (𝑏2, 𝑝2), (𝑏3, 𝑝3)  

are predefined. 13 

The graphs presented below show the behavior of the function  14 

𝑇𝑛(𝑡, 𝑥) = 𝐏{𝜏(𝑡) > 𝑥 | initialbufferstate = 𝑛}  

in dependence on time parameter t for selected values of the argument 𝑥 and different initial 15 

states 𝑛 of the accumulative buffer at the opening of the system. Moreover, appropriate 16 

stationary waiting time probabilities are found in each case. 17 

6.1. Scenario 1  18 

In Scenario 1, we take into consideration the model in which 𝑎 = 2 and the hyper-19 

exponential service time distribution is defined by the following parameters:  20 

𝑏1 = 1, 𝑝1 = 0.5, 𝑏2 = 2, 𝑝2 = 0.3, 𝑏3 = 3, 𝑝3 = 0.2,  

So 50% of customers are offered service with an average duration 1, for 30% of customers 21 

the mean service duration equals 0.5, and for the remaining 20% it is equal to 0.3 time unit. 22 

It is easy to check that the offered load ρ for such a model equals  23 
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𝜌 =
𝑑𝑒𝑓

(Arrival rate) × (Mean service time) = 1.43,  

so the system is overloaded. 1 

In Figures 1 and 2 the visualization of probabilities  2 

𝑇𝑛(𝑡, 1) = 𝐏{𝜏(𝑡) > 1 | initialbufferstate = 𝑛}  

and  3 

𝑇𝑛(𝑡, 0.2) = 𝐏{𝜏(𝑡) > 0.2 | initialbufferstate = 𝑛}  

are presented, respectively, for 𝑛 = 0 (solid line), 𝑛 = 1 (dashed line) and 𝑛 = 2 (dotted line). 4 

The same convention is adopted for all other figures. 5 

Stationary probabilities are the following: 6 

 𝐏{𝜏 > 1} = 0.078, 𝐏{𝜏 > 0.2} = 0.223.  

Let us note that around these values, the curves in each of the graphs stabilize (which 7 

illustrates that stationary probabilities do not depend on the initial buffer state). As it can be 8 

easily noted, the transient waiting time distribution depends essentially on the initial buffer state 9 

n. This dependence is especially noticeable for small values of t. 10 

 11 

Figure 1. Visualization of probabilities 𝑇𝑛(𝑡, 1) for Scenario 1 and 𝑛 = 0, 1, 2. 12 

Source: Authors’ own. 13 

 14 

Figure 2. Visualization of probabilities 𝑇𝑛(𝑡, 0.2) for Scenario 1 and 𝑛 = 0, 1, 2.  15 

Source: Authors’ own. 16 

  17 
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6.2. Scenario 2 1 

In this scenario, we take into consideration the same probability distribution of the service 2 

time as in Scenario 1 but we take smaller arrival intensity, namely 𝑎 = 1. In consequence we 3 

have 𝜌 = 0.717. 4 

Similarly to Scenario 1, we present in Figures 3 and 4 transient probabilities 𝑇𝑛(𝑡, 1) and 5 

𝑇𝑛(𝑡, 0.2) respectively, for 𝑛 = 0, 1 and 2. 6 

Appropriate probabilities in the equilibrium of the system are the following ones:  7 

𝐏{𝜏 > 1} = 0.082, 𝐏{𝜏 > 0.2} = 0.227.  

 8 

Figure 3. Visualization of probabilities 𝑇𝑛(𝑡, 1) for Scenario 2 and 𝑛 = 0, 1, 2.  9 

Source: Authors’ own. 10 

 11 

Figure 4. Visualization of probabilities 𝑇𝑛(𝑡, 0.2) for Scenario 2 and 𝑛 = 0, 1, 2.  12 

Source: Authors’ own. 13 

Let us note that in the case of a lower offered load (as in Figures 3-4), transient distributions 14 

converge slower to the stationary ones. For example, for 𝑡 = 4, the values of probabilities for 15 

different values of n differ markedly, while in the case of a greater offered load (Figures 1-2) 16 

they are almost imperceptible. 17 

6.3. Scenario 3  18 

In this scenario, the service time distribution is defined by the following parameters:  19 

𝑏1 = 1, 𝑝1 = 0.2, 𝑏2 = 2, 𝑝2 = 0.3, 𝑏3 = 3, 𝑝3 = 0.5,  

So 50% of customers are offered service with the smallest average duration 0.3, for 30% of 20 

customers the mean service duration equals 0.5, and for the remaining 20% it equals 1 time 21 

unit. 22 
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For such a model we take the arrival rate 𝑎 = 3 and hence the offered load 𝜌 = 1.550,  1 

so the system is overloaded and in Scenario 1. 2 

Probabilities in the steady state of the system are following:  3 

𝐏{𝜏 > 1} = 0.047, 𝐏{𝜏 > 0.2} = 0.194.  

Visualizations of transient probabilities 𝑇𝑛(𝑡, 1) and 𝑇𝑛(𝑡, 0.2) are shown in Figures 5  4 

and 6, respectively. 5 

 6 

Figure 5. Visualization of probabilities 𝑇𝑛(𝑡, 1) for Scenario 3 and 𝑛 = 0, 1, 2.  7 

Source: Authors’ own. 8 

 9 

Figure 6. Visualization of probabilities 𝑇𝑛(𝑡, 0.2) for Scenario 3 and 𝑛 = 0, 1, 2.  10 

Source: Authors’ own. 11 

6.4. Scenario 4  12 

In the last scenario we take the same service time distribution as defined for Scenario 3  13 

but we take smaller intensity of customer arrivals, namely 𝑎 = 2. In this case we then have  14 

𝜌 = 1.033, so the offered load is smaller as in Scenario 3 essentially. 15 

For Scenario 4 we obtain  16 

𝐏{𝜏 > 1} = 0.051, 𝐏{𝜏 > 0.2} = 0.206.  

Transient probabilities 𝑇𝑛(𝑡, 1) and 𝑇𝑛(𝑡, 0.2) are presented in Figures 7 and 8, respectively. 17 
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 1 

Figure 7. Visualization of probabilities 𝑇𝑛(𝑡, 1) for Scenario 4 and 𝑛 = 0, 1, 2.  2 

Source: Authors’ own. 3 

 4 

Figure 8. Visualization of probabilities 𝑇𝑛(𝑡, 0.2) for Scenario 4 and 𝑛 = 0, 1, 2.  5 

Source: Authors’ own. 6 

Let us note that the service time distribution defined for Scenarios 3-4 is “opposite” to that 7 

defined for Scenarios 1-2: firstly the smallest mean service time is the rarest one, in Scenarios 8 

3-4 it is the most frequent. In consequence, “roles” of successive curves representing transient 9 

probabilities change too: the behavior of curves obtained for 𝑛 = 0 in Scenarios 1-2 is similar 10 

to the behavior of curves obtained for 𝑛 = 2 in Scenarios 3-4, and vice versa. 11 
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