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1. Introduction and Motivation 1 

Currently, many papers are available regarding queueing models and their applications to 2 

real-life problems. The literature still grows fast, and more complex models are analyzed in 3 

different settings to solve problems that arise due to the fast development of technology.  4 

From the perspective of computer networks, telecommunication, and production systems, 5 

today, one of the most critical problems is reducing energy consumption to keep operating costs 6 

low. 7 

One way to keep power consumption low is to stop processing the arriving jobs temporarily. 8 

This method has been studied for years and is still one of the main energy-consumption 9 

reduction approaches. To prevent the system from switching the state often, which may lead to 10 

higher energy consumption when extra energy is needed to turn the server on, or to a higher 11 

maintenance cost due to the more excellent wear of the server components, the so-called  12 

N-policy can be applied, see, e.g. (Kempa et al., 2010), where the queue length for batch arrival 13 

model with N-policy and setup times were considered. The energy-saving capability of the sleep 14 

mode was analyzed, e.g., in (Chunxia, Shunfu, 2018; Yin et al., 2020; Yin et al., 2022), where 15 

the queueing model was used to model the virtual machine sleep schedule; in (Kempa, 2019), 16 

where the vacation queue with N-policy was used to model the Wireless Sensor Network node, 17 

in (Harini, Indhira, 2024), where the queueing model with vacation was used to analyze  18 

a 5G base station, or in (Jin et al., 2020), where vacation queue with N-policy was considered 19 

to save energy in cloud data center. 20 

Unfortunately, applying the sleep mode can lead to a decrease in the quality of service. 21 

When the jobs are not processed, they accumulate in the buffer, and due to the finite capacity 22 

of the real-life systems, they can be lost when the buffer is saturated. To help reduce the negative 23 

impact of completely turning the server off, the working vacation mode can be introduced 24 

instead of the vacation mode. In working vacation (or so-called semi-sleep, semi-vacation) 25 

mode, the server processes the jobs at reduced speed instead of closing entirely for the arriving 26 

customers. In Zhu et al. (2004), Bostoen et al. (2013), one can find the justification for using 27 

the working vacation mode as an energy-saving mechanism in the context of cloud data centers 28 

and real-time embedded systems. The queue with working vacation policy was considered,  29 

for example, in Qin et al. (2019), where this policy was applied to conserve energy on the cloud 30 

platform, or in Gong et al. (2020), where the working vacation model with N-policy was used 31 

to improve the cost-performance ratio in cyber-physical systems. 32 

Recently, many researchers have considered models with a mixed vacation and working 33 

vacation policy. In Jin et al. (2019), a model with two service speeds and vacations was used to 34 

model a cloud data center. Based on the state, virtual machines are put into sleep mode or slow 35 

down the service. In Ait Braham et al. (2023), two types of vacations are implemented.  36 

When the system becomes empty, it takes a type I vacation at random times, and if at the end 37 
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of the type I vacation, no jobs are waiting, it takes a type II vacation. A similar solution was 1 

described in Mohammed Shapique et al. (2024), where the energy-saving capability of this 2 

approach is analyzed in the context of WiMAX and tethered high-altitude platform systems.  3 

In Divya, Indhira (2024), the cost analysis of the hybrid vacation policy is performed. As one 4 

can note, vacation and working vacation are usually used to model servers that can enter more 5 

than one successive vacation period. In the following periods, the type of vacation can change. 6 

Sometimes, a different approach would be of great value to better reflect the behavior of the 7 

modeled system. 8 

This paper considers the finite buffer queueing model with Poisson arrivals and general 9 

service times. When the system empties, it changes its operating mode to vacation mode, when 10 

no jobs are processed, or to working vacation mode, when jobs are processed but at lower speed. 11 

The operating mode is chosen randomly, which may reflect, for example, a system where some 12 

background tasks need to be done. The server waits until there are no main tasks to do and then 13 

moves some resources to work on secondary tasks, which results in a slower speed of processing 14 

main tasks if they appear during this period. When there are no side jobs to be done, the server 15 

goes to sleep mode. 16 

The paper is organized as follows. In Section 2, a detailed description of the model is given. 17 

In Section 3, the system of integral equations for the transient time to the first buffer overflow 18 

is stated and solved in terms of the Laplace transform in Section 4. The Theorem summarizing 19 

the result is given with an additional result for the mean time to the first buffer overflow.  20 

In Section 5, the instructions to obtain the distribution to 𝑘-th buffer overflow are given  21 

for 𝑘 = 2,3, …. The mean time to the 𝑘-th buffer overflow is also presented. 22 

2. Model description  23 

In this section, we give a detailed description of the service model considered and introduce 24 

the necessary notation. Let us consider a single-server queueing model in which messages arrive 25 

according to a simple Poisson process with constant rate 𝑎 > 0 and are processed individually, 26 

according to a FIFO service rule. A processing time of an individual message is randomly 27 

distributed with a cumulative distribution function (CDF) 𝐹(⋅). A message departs the system 28 

immediately after its processing is completed. An arriving message that finds the server busy 29 

with processing joins the queue and waits for service. An accumulation buffer (waiting room) 30 

has a predefined capacity. Hence, the maximum system size equals 𝐵, namely 𝐵 − 1 places are 31 

available in the buffer, and one spot is reserved for the message being processed. Consequently, 32 

if the entering message finds the system saturated (the server is busy with processing and all 33 

places in the buffer are occupied) it is lost due to buffer overflow. 34 
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Every time when the system empties (at the service completion epoch of the message that 1 

leaves the system empty), the optimization mode is being started. Namely, either the service 2 

station becomes unavailable for a certain period of time of random length (server vacation),  3 

or when a message enters the empty system, its service is started, but its duration has a CDF 4 

𝐹⋆(⋅) and with probability one lasts at least as long as in the case of other customers (service 5 

slowdown), so we have: 6 

𝐹⋆(𝑡) ≤ 𝐹(𝑡) (1) 

for each 𝑡 > 0. 7 

The choice of one of the two above options is determined by the value of the parameter  8 

𝛾 ∈ [0,1]. More precisely speaking, with probability 𝛾 the server goes to the vacation which is 9 

randomly distributed with a CDF 𝑉(⋅). During the vacation, the processing of messages is 10 

completely blocked. Otherwise, however, the server with probability 1 − 𝛾chooses the option 11 

of the service slowdown. In this case, the server is always ready to process, but the first message 12 

incoming to the empty system is served “longer” than other messages. 13 

The above-described mechanism of temporary suspension or slowing down of service 14 

allows for practical modeling of a real system in which the optimization mechanism has been 15 

implemented. The server handles secondary tasks when there are no messages in the system.  16 

If these tasks are large, the server chooses to suspend the handling of primary functions for 17 

some time entirely. When the number of secondary tasks is small, the server does not suspend 18 

the handling of primary tasks. Still, while the first one is being handled, it simultaneously 19 

ultimately finalizes handling secondary tasks. Of course, the period of suspension or slowing 20 

down of service can also be used to perform a periodic server inspection or update the 21 

appropriate IT system. 22 

Let us denote by 𝑁(𝑡) the number of messages (jobs, customers, packets, etc.) present in 23 

the system at time 𝑡 ≥ 0, including the one being processed at this time, if any. 24 

Besides, let 𝛿𝑘, 𝑘 = 1,2, . . ., stands for the time to the 𝑘th buffer overflow, so the length of 25 

the time period between the completion epoch of the (𝑘 − 1)th busy period of the system and 26 

the first moment after this time at which the system becomes saturated (the number of messages 27 

present equals 𝐵). Obviously, 𝛿1 represents the time from the opening of the system  28 

at 𝑡 = 0 to the first overflow occurrence, so we denote: 29 

𝛿1 =
𝑑𝑒𝑓

min{𝑡 > 0: 𝑁(𝑡) = 𝐵}. (2) 

  30 



On Time to Buffer Overflow… 225 

3. Integral Equations for the Time to the First Buffer Overflow  1 

In this section, we derive the system of integral equations for the tail probability distribution 2 

of the time 𝛿1 to the first buffer overflow, conditioned by the state of the accumulation buffer 3 

at the starting epoch 𝑡 = 0. 4 

Introduce the following notation:  5 

𝐷𝑛(𝑡) =
𝑑𝑒𝑓

𝐏{𝛿1 > 𝑡 | 𝑁(0) = 𝑛}, (3) 

where: 𝑛 ∈ {0, . . . , 𝐵 − 1} and 𝑡 > 0. 6 

Assume firstly that the buffer is empty at the opening of the system (𝑡 = 0). Evidently,  7 

in this case the server can choose either going for a vacation or processing with a slower speed. 8 

Observe that in such a case, to have a non-zero probability that 𝛿1 > 𝑡, the following mutually 9 

excluding random events can occur for fixed 𝑡 > 0:  10 

 𝔸1(𝑡): the server goes for a vacation that finishes before time 𝑡 and the first message 11 

arrives after the vacation completion but still before 𝑡;  12 

 𝔸2(𝑡): the server goes for a vacation that finishes before time 𝑡 with 𝑘 messages present, 13 

where 𝑘 ∈ {1, . . . , 𝐵 − 1};  14 

 𝔸3(𝑡): the server goes for a vacation that finishes after time 𝑡 and the number of 15 

messages accumulated in the buffer at time 𝑡 equals 𝑘, where 𝑘 ∈ {1, . . . , 𝐵 − 1};  16 

 𝔸4(𝑡): the server chooses slowing down the service and the first message enters  17 

before 𝑡;  18 

 𝔸5(𝑡): the first message occurs after time 𝑡.  19 

The formula of total probability gives: 20 

𝐷0(𝑡) = ∑

5

𝑖=1

𝐷0
(𝑖)

(𝑡), (4) 

where: 21 

𝐷0
(𝑖)

(𝑡) =
𝑑𝑒𝑓

𝐏{𝛿1 > 𝑡, 𝔸𝑖(𝑡) | 𝑁(0) = 0}. (5) 

It is easy to check that the following representation is true, considering the random  22 

event 𝔸1(𝑡):  23 

𝐷0
(1)

(𝑡) = 𝛾 ∫
𝑡

0

𝑎𝑒−𝑎𝑥𝑉(𝑥)𝐷1(𝑡 − 𝑥)𝑑𝑥. (6) 

Similarly, for 𝔸2(𝑡) we get:  24 

𝐷0
(2)

(𝑡) = 𝛾 ∫
𝑡

0

∑

𝐵−1

𝑘=1

(𝑎𝑦)𝑘

𝑘!
𝑒−𝑎𝑦𝐷𝑘(𝑡 − 𝑦)𝑑𝑉(𝑦). (7) 

 25 

  26 
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For the random event 𝔸3(𝑡) we obtain the following expression: 1 

𝐷0
(3)

(𝑡) = 𝛾𝑉(𝑡) ∑

𝐵−1

𝑘=1

(𝑎𝑡)𝑘

𝑘!
𝑒−𝑎𝑡. (8) 

where: 𝑉(𝑡) =
𝑑𝑒𝑓

1 − 𝑉(𝑡). 2 

In the case of the random event 𝐷0
(4)

(𝑡) two separate sub-cases should be considered:  3 

the first one relates to the situation in that the first (slower) service completes before 𝑡,  4 

while the second one describes the opposite case. So, we have: 5 

𝐷0
(4)

(𝑡) = (1 − 𝛾) ∫
𝑡

𝑥=0

𝑎𝑒−𝑎𝑥𝑑𝑥𝐷0
(3)

(𝑡) = 𝛾𝑉(𝑡) ∑

𝐵−1

𝑘=1

(𝑎𝑡)𝑘

𝑘!
𝑒−𝑎𝑡. 

× [∫
𝑡−𝑥

𝑦=0

∑

𝐵−2

𝑘=0

(𝑎𝑦)𝑘

𝑘!
𝑒−𝑎𝑦𝐷𝑘+1(𝑡 − 𝑥 − 𝑦)𝑑𝐹⋆(𝑦) 

+𝐹⋆(𝑡 − 𝑥)𝑒−𝑎(𝑡−𝑥) ∑

𝐵−2

𝑘=0

[𝑎(𝑡 − 𝑥)]𝑘

𝑘!
], 

(9) 

where two summands on the right side of (9) correspond to the first and second sub-cases, 6 

respectively. 7 

Finally, obviously, we have:  8 

𝐷0
(5)

(𝑡) = 𝑒−𝑎𝑡. (10) 

Now let us consider the system that is non-empty at the opening. Conditioning by the first 9 

departure moment after the starting of the system (this moment is a renewal moment in the 10 

evolution of the considered queueing system due to memoryless property of exponential 11 

distribution of interarrival times), we obtain: 12 

𝐷𝑛(𝑡) = ∑

𝐵−𝑛−1

𝑘=0

∫
𝑡

0

(𝑎𝑦)𝑘

𝑘!
𝑒−𝑎𝑦𝐷𝑛+𝑘−1(𝑡 − 𝑦)𝑑𝐹(𝑦) 

+𝐹(𝑡)𝑒−𝑎𝑡 ∑

𝐵−𝑛−1

𝑘=0

(𝑎𝑡)𝑘

𝑘!
, 

(11) 

where: 𝑘 ∈ {1, . . . , 𝐵 − 1} and 𝐹(𝑡) =
𝑑𝑒𝑓

1 − 𝐹(𝑡). 13 

Indeed, the first summand on the right side of (11) relates to the case in which the first 14 

message leaves the system after completing its service before time 𝑡, while the second one to 15 

the opposite case. 16 

Introduce now the Laplace transform (LT) of 𝐷𝑛(𝑡) as follows: 17 

�̂�𝑛(𝑠) =
𝑑𝑒𝑓

∫
∞

0

𝑒−𝑠𝑡𝐷𝑛(𝑡)𝑑𝑡, (12) 

where: 𝑠 > 0. 18 

We are interested in writing representations obtained for 𝐷0(𝑡), . . . , 𝐷𝐵−1(𝑡) in terms  19 

of their LTs. 20 
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Let us note that (compare the right side of (6)) 1 

𝛾 ∫
∞

𝑡=0

𝑒−𝑠𝑡𝑑𝑡 ∫
𝑡

𝑥=0

𝑎𝑒−𝑎𝑥𝑉(𝑥)𝐷1(𝑡 − 𝑥)𝑑𝑥 

= 𝛾𝑎 ∫
∞

𝑥=0

𝑒−(𝑎+𝑠)𝑥𝑉(𝑥)𝑑𝑥 ∫
∞

𝑡=𝑥

𝑒−𝑠(𝑡−𝑥)𝐷1(𝑡 − 𝑥)𝑑𝑡 = 𝐴(𝑠)�̂�1(𝑠), 

 

(13) 

where: 2 

𝐴(𝑠) =
𝑑𝑒𝑓

𝛾𝑎 ∫
∞

0

𝑒−(𝑎+𝑠)𝑥𝑉(𝑥)𝑑𝑥. (14) 

Next, we have (see the right side of (7)): 3 

𝛾 ∫
∞

𝑡=0

𝑒−𝑠𝑡𝑑𝑡 ∫
𝑡

𝑦=0

∑

𝐵−1

𝑘=1

(𝑎𝑦)𝑘

𝑘!
𝑒−𝑎𝑦𝐷𝑘(𝑡 − 𝑦)𝑑𝑉(𝑦) 

= 𝛾 ∑

𝐵−1

𝑘=1

∫
∞

𝑦=0

(𝑎𝑦)𝑘

𝑘!
𝑒−(𝑎+𝑠)𝑦𝑑𝑉(𝑦) × ∫

∞

𝑡=𝑦

𝑒−𝑠(𝑡−𝑦)𝐷𝑘(𝑡 − 𝑦)𝑑𝑡 

= ∑

𝐵−1

𝑘=1

𝐵𝑘(𝑠)�̂�𝑘(𝑠), 

(15) 

where: 4 

�̂�𝑘(𝑠) =
𝑑𝑒𝑓

∫
∞

0

𝑒−(𝑎+𝑠)𝑦
(𝑎𝑦)𝑘

𝑘!
𝑑𝑉(𝑦). (16) 

According to (8), let us define:  5 

𝐶(𝑠) =
𝑑𝑒𝑓

𝛾 ∫
∞

0

𝑒−(𝑎+𝑠)𝑡𝑉(𝑡) ∑

𝐵−1

𝑘=1

(𝑎𝑡)𝑘

𝑘!
𝑑𝑡. (17) 

Changing the order of integration according to the following scheme (compare the right side 6 

of (9)):  7 

∫
∞

𝑡=0

∫
𝑡

𝑥=0

∫
𝑡−𝑥

𝑦=0

 →  ∫
∞

𝑥=0

∫
∞

𝑡=𝑥

∫
𝑡−𝑥

𝑦=0

→  ∫
∞

𝑥=0

∫
∞

𝑦=0

∫
∞

𝑡=𝑥+𝑦

, (18) 

we obtain:  8 

(1 − 𝛾) ∫
∞

𝑥=0

𝑎𝑒−(𝑎+𝑠)𝑥𝑑𝑥 ∫
∞

𝑦=0

∑

𝐵−2

𝑘=1

(𝑎𝑦)𝑘

𝑘!
𝑒−(𝑎+𝑠)𝑦𝑑𝐹⋆(𝑦) 

× ∫
∞

𝑡=𝑥+𝑦

𝑒−𝑠(𝑡−𝑥−𝑦)𝐷𝑘+1(𝑡 − 𝑥 − 𝑦)𝑑𝑡 = ∑

𝐵−2

𝑘=0

𝐸𝑘(𝑠)�̂�𝑘+1(𝑠), 

(19) 

where:  9 

𝐸𝑘(𝑠) =
𝑑𝑒𝑓 (1 − 𝛾)𝑎

𝑎 + 𝑠
∫

∞

0

(𝑎𝑦)𝑘

𝑘!
𝑒−(𝑎+𝑠)𝑦𝑑𝐹⋆(𝑦). (20) 

 10 

  11 
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Similarly (see (9)): 1 

(1 − 𝛾) ∑𝐵−2
𝑘=0

𝑎𝑘+1

𝑘!
∫

∞

𝑥=0
𝑒−(𝑎+𝑠)𝑥𝑑𝑥 × ∫

∞

𝑡=𝑥
𝑒−(𝑎+𝑠)(𝑡−𝑥)(𝑡 − 𝑥)𝑘𝐹⋆(𝑡 − 𝑥)𝑑𝑡  

= ∑

𝐵−2

𝑘=0

𝐺𝑘(𝑠), 
(21) 

where: 2 

𝐺𝑘(𝑠) =
𝑑𝑒𝑓 (1 − 𝛾)𝑎

𝑎 + 𝑠
∫

∞

0

(𝑎𝑡)𝑘

𝑘!
𝑒−(𝑎+𝑠)𝑡𝐹⋆(𝑡)𝑑𝑡. (22) 

Obviously, the LT of the right side of (10) gives: 3 

1

𝑎 + 𝑠
. (23) 

Referring now to (12)-(23) we can write:  4 

�̂�0(𝑠) = ∑

𝐵−1

𝑘=1

(𝛿𝑘,1𝐴(𝑠) + 𝐵𝑘(𝑠) + 𝐸𝑘−1(𝑠))�̂�𝑘(𝑠) + 𝐶(𝑠) + ∑

𝐵−2

𝑘=0

𝐺𝑘(𝑠) +
1

𝑎 + 𝑠
. (24) 

So, defining:  5 

Θ𝑘(𝑠) =
𝑑𝑒𝑓

𝛿𝑘,1𝐴(𝑠) + 𝐵𝑘(𝑠) + 𝐸𝑘−1(𝑠), (25) 

where: 𝑘 ∈ {1, . . . , 𝐵 − 1}, and: 6 

Φ(𝑠) =
𝑑𝑒𝑓

𝐶(𝑠) + ∑

𝐵−2

𝑘=0

𝐺𝑘(𝑠) +
1

𝑎 + 𝑠
, (26) 

we obtain: 7 

�̂�0(𝑠) = ∑

𝐵−1

𝑘=1

Θ𝑘(𝑠)�̂�𝑘(𝑠) + Φ(𝑠). (27) 

Similarly, taking LTs of both sides of (11) we get: 8 

�̂�𝑛(𝑠) = ∑

𝐵−𝑛−1

𝑘=0

𝛼𝑘(𝑠)�̂�𝑛+𝑘−1(𝑠) + 𝛽𝑛(𝑠), (28) 

where: 𝑛 ∈ {1, . . . , 𝐵 − 1} and: 9 

𝛼𝑘(𝑠) =
𝑑𝑒𝑓

∫
∞

0

𝑒−(𝑎+𝑠)𝑦
(𝑎𝑦)𝑘

𝑘!
𝑑𝐹(𝑦) (29) 

and:  10 

𝛽𝑛(𝑠) =
𝑑𝑒𝑓

∑

𝐵−𝑛−1

𝑘=0

∫
∞

0

𝑒−(𝑎+𝑠)𝑡
(𝑎𝑡)𝑘

𝑘!
𝐹(𝑡)𝑑𝑡. (30) 
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4. Explicit Solution in Terms of Laplace Transforms  1 

In this section, we give an explicit solution of the linear system of equations (27)-(28), 2 

which is written using a certain auxiliary functional sequence. Firstly, we should reformulate 3 

(27)-(28). 4 

Let us apply the following substitution: 5 

�̂�𝑛(𝑠) =
𝑑𝑒𝑓

�̂�𝐵−𝑛(𝑠) (31) 

Equations (27)-(28) has now the following forms:  6 

�̂�𝐵(𝑠) = ∑

𝐵−1

𝑘=1

Θ𝐵−𝑘(𝑠)�̂�𝑘(𝑠) + Φ(𝑠) (32) 

and:  7 

∑

𝑛−1

𝑘=−1

𝛼𝑘+1(𝑠)�̂�𝑛−𝑘(𝑠) − �̂�𝑛(𝑠) = 𝜑𝑛(𝑠), (33) 

where: 𝑛 ∈ {1, . . . , 𝐵 − 1} and:  8 

𝜑𝑛(𝑠) =
𝑑𝑒𝑓

�̂�1(𝑠)𝛼𝑛(𝑠) − 𝛽𝐵−𝑛(𝑠). (34) 

To obtain the solution of the system (32)–(33) in a compact form, we use an auxiliary 9 

algebraic result. The following lemma can be found in (Korolyuk, 1974; see also Kempa, 2016). 10 

Lemma 1. 11 

Assume that (𝑢𝑛(𝑠)) and (𝑣𝑛(𝑠)) are two given functional sequences, where additionally 12 

𝑢0(𝑠) ≠ 0. Each solution of the system of infinite number equations of the form: 13 

∑

𝑛−1

𝑘=−1

𝑢𝑘+1(𝑠)𝑥𝑛−𝑘(𝑠) − 𝑥𝑛(𝑠) = 𝑣𝑛(𝑠), (35) 

where: 𝑛 ≥ 1, can be expressed as follows: 14 

𝑥𝑛(𝑠) = 𝑀(𝑠)𝑅𝑛(𝑠) + ∑

𝑛

𝑘=1

𝑅𝑛−𝑘(𝑠)𝑣𝑘(𝑠), (36) 

where: 𝑛 ≥ 1, 𝑀(𝑠) is certain function (independent on 𝑛) and the functional sequence (𝑅𝑘(𝑠)) 15 

is defined as follows:  16 

𝑅0(𝑠) = 0, 𝑅1(𝑠) = 𝑢0
−1(𝑠), 

𝑅𝑘+1(𝑠) = 𝑅1(𝑠) [𝑅𝑘(𝑠) − ∑

𝑘

𝑖=0

𝑢𝑖+1(𝑠)𝑅𝑘−𝑖(𝑠)] 
(37) 

for 𝑘 ≥ 1. 17 

Let us note that in (32)-(33) the role of 𝑢𝑘(𝑠) and 𝑣𝑘(𝑠) play 𝛼𝑘(𝑠) and 𝜑𝑘(𝑠), respectively, 18 

and the unknown functional sequence is now (�̂�𝑛(𝑠)). Moreover, because the number of 19 

equations in (32)-(33) is finite, one can use the equation (32) as a kind of a boundary condition 20 

that will be helpful to express 𝑀(𝑠) explicitly. 21 
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In consequence, we have: 1 

�̂�𝑛(𝑠) = 𝑀(𝑠)𝑅𝑛(𝑠) + ∑

𝑛

𝑘=1

𝑅𝑛−𝑘(𝑠)𝜑𝑘(𝑠), (38) 

where: 𝑛 ≥ 1 and:  2 

𝑅0(𝑠) = 0, 𝑅1(𝑠) = 𝛼0
−1(𝑠), 

𝑅𝑘+1(𝑠) = 𝑅1(𝑠) [𝑅𝑘(𝑠) − ∑

𝑘

𝑖=0

𝛼𝑖+1(𝑠)𝑅𝑘−𝑖(𝑠)]. 
(39) 

Obviously, it is necessary to find the representation for �̂�1(𝑠) and 𝑀(𝑠) occurring in (34) 3 

and (38), respectively. 4 

Substituting 𝑛 = 1 into (38) we obtain: 5 

�̂�1(𝑠) = 𝑀(𝑠)𝑅1(𝑠). (40) 

Next, let us note that, taking 𝑛 = 𝐵 in (38) and applying (34) and (40), we get: 6 

�̂�𝐵(𝑠) = 𝑀(𝑠)𝑅𝐵(𝑠) + ∑

𝐵

𝑘=1

[𝑀(𝑠)𝑅1(𝑠)𝛼𝑘(𝑠) − 𝛽𝐵−𝑘(𝑠)]𝑅𝐵−𝑘(𝑠). 

 

(41) 

Simultaneously, from the other side we have from (32), referring to (34) and (38): 7 

�̂�𝐵(𝑠) = ∑

𝐵−1

𝑘=1

Θ𝐵−𝑘(𝑠)[𝑀(𝑠)𝑅𝑘(𝑠) 

+ ∑

𝑘

𝑖=1

(𝑀(𝑠)𝑅1(𝑠)𝛼𝑖(𝑠) − 𝛽𝐵−𝑖(𝑠))𝑅𝑘−𝑖(𝑠)] + Φ(𝑠). 

(42) 

Introduce now the following auxiliary notations: 8 

Γ𝑘(𝑠) =
𝑑𝑒𝑓

𝑅𝑘(𝑠) + 𝑅1(𝑠) ∑

𝑘

𝑖=1

𝛼𝑖(𝑠)𝑅𝑘−𝑖(𝑠)𝑀(𝑠) = 𝐹𝐴𝐶1−1(𝑠)𝐹𝐴𝐶2(𝑠), (43) 

and: 9 

Δ𝑘(𝑠) =
𝑑𝑒𝑓

∑

𝑘

𝑖=1

𝛽𝐵−𝑖(𝑠)𝑅𝑘−𝑖(𝑠). (44) 

Comparing the right sides of representations (41) and (42) we eliminate 𝑀(𝑠) in the 10 

following form: 11 

𝑀(𝑠) = 𝐹𝐴𝐶1−1(𝑠)𝐹𝐴𝐶2(𝑠), (45) 

where: 12 

𝐹𝐴𝐶1(𝑠) =
𝑑𝑒𝑓

Γ𝐵(𝑠) − ∑

𝐵−1

𝑘=1

Θ𝐵−𝑘(𝑠)Γ𝑘(𝑠) (46) 

 13 
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and:  1 

𝐹𝑆𝐶2(𝑠) =
𝑑𝑒𝑓

Δ𝐵(𝑠) − ∑

𝐵−1

𝑘=1

Θ𝐵−𝑘(𝑠)Δ𝑘(𝑠) + Φ(𝑠). (47) 

Now we have (see (38)): 2 

�̂�𝑛(𝑠) = 𝐹𝐴𝐶1−1(𝑠)𝐹𝐴𝐶2(𝑠)𝑅𝑛(𝑠) 

+ ∑

𝑛

𝑘=1

[𝐹𝐴𝐶1−1(𝑠)𝐹𝐴𝐶2(𝑠)𝑅1(𝑠)𝛼𝑘(𝑠) − 𝛽𝐵−𝑘(𝑠)]𝑅𝑛−𝑘(𝑠) 

= 𝐹𝐴𝐶1−1(𝑠)𝐹𝐴𝐶2(𝑠)[𝑅𝑛(𝑠) + 𝑅1(𝑠) ∑

𝑛

𝑘=1

𝛼𝑘(𝑠)𝑅𝑛−𝑘(𝑠)] − ∑

𝑛

𝑘=1

𝛽𝐵−𝑘(𝑠)𝑅𝑛−𝑘(𝑠). 

(48) 

Returning to functional sequence �̂�𝑛(𝑠) (see (32)), we can formulate the following theorem. 3 

Theorem 1. 4 

In the queueing model, the representation for the LT of the tail CDF of the time to the first 5 

buffer overflow is given by the following formula:  6 

�̂�𝑛(𝑠)(𝑡) = 𝐹𝐴𝐶1−1(𝑠)𝐹𝐴𝐶2(𝑠)[𝑅𝐵−𝑛(𝑠) 

+𝑅1(𝑠) ∑

𝐵−𝑛

𝑘=1

𝛼𝑘(𝑠)𝑅𝐵−𝑛−𝑘(𝑠)] − ∑

𝐵−𝑛

𝑘=1

𝛽𝐵−𝑘(𝑠)𝑅𝐵−𝑛−𝑘(𝑠), 
(49) 

where: 𝑛 ∈ {0, . . . , 𝐵 − 1} the and the representations for 𝐹𝐴𝐶1(𝑠), 𝐹𝐴𝐶2(𝑠), 𝑅𝑘(𝑠), 𝛼𝑘(𝑠) and 7 

𝛽𝑘(𝑠) are given in (46), (47), (39), (29) and (30), respectively.  8 

Just from the definition of �̂�𝑛(𝑡) we get, as a corollary from Theorem 1, the following 9 

representation for the mean value of the time to the first buffer overflow conditioned by the 10 

initial buffer state 𝑛. 11 

Corollary 1. 12 

The mean time 𝑬𝑛(𝛿1) to the first buffer overflow under condition that the accumulation 13 

buffer contains exactly 𝑛 messages initially is given by:  14 

𝐄𝑛(𝛿1) = ∫
∞

0

𝐏{𝛿1 > 𝑡 | 𝑁(0) = 𝑛}𝑑𝑡 = �̂�𝑛(0). (50) 

5. Next Buffer Overflow Periods 15 

Defining the next times to buffer overflow by 𝛿𝑘, where 𝑘 = 2,3, . .. (we assume here that 16 

appropriate time is measured beginning with the completion epoch of the previous buffer 17 

overflow), let us note that after finishing each buffer overflow period the number of messages 18 

present in the system equals 𝐵 − 1 due to the individual service process organization. 19 

  20 
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Hence, we have the following corollary. 1 

Corollary 2. 2 

The LT of the probability that the time 𝛿𝑘 to the 𝑘th buffer overflow (counting from the 3 

completion epoch of the (𝑘 − 1)th such period) exceeds 𝑡, where 𝑘 = 2,3, . .., is given by: 4 

∫
∞

0

𝑒−𝑠𝑡𝐏{𝛿1 > 𝑡 | 𝑁(0) = 𝐵 − 1}𝑑𝑡 = �̂�𝐵−1(𝑠), (51) 

So is the same as the analogous transform given for the time to the first buffer overflow 𝛿1 5 

on condition 𝑁(0) = 𝐵 − 1.  6 

Therefore, we obtain 7 

Corollary 3. 8 

The mean value of the time 𝛿𝑘 to the 𝑘th buffer overflow period, where 𝑘 = 2,3, . .., is given 9 

by:  10 

𝐄(𝛿𝑘) = �̂�𝐵−1(0). (52) 

6. Conclusions and future work 11 

The paper analyzed the theoretical model of a service unit with periodic suspension or 12 

service slowdown. The finite buffer queueing model was proposed with two types of vacations 13 

to obtain a compromise between energy savings ability and maintaining the highest possible 14 

quality of service. The system of integral equations was solved using an algebraic approach in 15 

terms of Laplace transforms. The Laplace transform of the time to the first buffer overflow is 16 

obtained, and the mean time to the first overflow is given. The main result is then followed by 17 

the time to the 𝑘-th buffer overflow (𝑘 = 2,3, …) distribution and the respective mean time to 18 

the 𝑘-th buffer overflow. With the explicit solution, a numerical study can be conducted after 19 

the inversion of the Laplace transform. It can be done using one of the methods that can be 20 

found in the literature (see, for example Abate et al., 2000). 21 
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