## SCIENTIFIC PAPERS OF SILESIAN UNIVERSITY OF TECHNOLOGY ORGANIZATION AND MANAGEMENT SERIES NO. 213

2024

# ANALYSIS OF THE SHARE OF ENERGY FROM RENEWABLE SOURCES IN THE ELECTRICITY SECTOR IN POLAND AND THE EUROPEAN UNION

## Dorota GAWROŃSKA

Silesian University of Technology, Faculty of Organization and Management, Department of Economics and Informatics; dorota.gawronska@polsl.pl, ORCID: 0000-0001-8192-0789

**Purpose:** The article aims to analyze the share and forecast the share in the following year's share of renewable energy sources in Poland and the European Union; it will present the situation of Poland and the European Union to determine new directions of action towards increasing the share of renewable energy sources.

**Design/methodology/approach**: The work analyzes changes in subsequent periods, compares shares in Poland with shares in the European Union, and uses an analytical model to present forecasts for the coming years.

**Findings:** The work identifies a growing trend in the overall share of renewable energy sources in Poland and the European Union, draws attention to Poland's low share compared to other EU countries and examines changes in the shares of individual factors in the Electricity sector.

**Research limitations/implications**: Based on the analysis of the energy shares from renewable sources in the Electricity sector, it seems reasonable to conduct a similar analysis for the other two sectors and link the results with changes in environmental pollution.

**Practical implications:** The results of the analysis may influence actions taken in Poland to increase the share of energy from renewable sources and be the basis for analysis in terms of Poland's implementation of Directive (EU) 2018/2001.

**Originality/value:** The article presents analyses of the share of energy from renewable sources along with forecasts for the following years, which analyses can be used by the entity responsible for implementing activities under Directive (EU) 2018/2001.

Keywords: renewable energy, forecasting, Directive (EU) 2018/2001.

Category of the paper: Research paper, general review.

## 1. Introduction

Energy from renewable sources, commonly referred to as renewable energy, is defined by the International Energy Agency (IEA, 2024) as "renewable energy is derived from natural processes that are replenished at a faster rate than they are consumed" (SHARES, 2023). That is energy, including non-fossil sources, using the Earth's natural resources, characterized

by renewable energy as "inexhaustible" energy sources (Szafrański, 2004). The concept of renewable energy sources is fundamental due to its appearance in EU legal acts, as well as in the legal regulations of the European Union Member States. The first definitions of renewable sources are included in 2003/54/EC, 2009/72/EC, 2001/77/EC (Pobrzeżyńska, 2020). The definition currently in force in Directive 2009/28/EC is mainly similar to that in Directive 2009/28/EC, but updated with a more precise definition and taking into account new technologies and sustainability criteria: "renewable, non-fossil energy sources including wind energy, solar radiation, aerothermal energy, geothermal energy, hydrothermal energy, hydro energy, energy of waves, sea currents and tides, ambient energy, energy obtained from biomass, biogas, agricultural biogas, biomethane, bioliquids and renewable hydrogen" (Dziennik Ustaw, 2024). Directive (EU) 2018/2001 (RED II) replaced Directive 2009/28/EC, which was in force until December 31, 2020. This directive was created due to the lack of apparent progress towards achieving the objectives in Directive 2001/77/EC and the need to combat climate change. This directive sets new goals for Member States: 20% share of renewable energy in gross energy consumption in the EU by 2020 and at least 10% of renewable energy in transport by 2020. The targets were set at the national level, and Member States could choose the means to achieve them. Directive (EU) 2018/2001 (RED II) introduced new objectives and rules for 2021-2030. RED II raised the average EU target to 32% renewable energy by 2030 and updated the methods of calculating this indicator, considering more sustainable energy sources (Dziennik Ustaw, 2024).

Due to the requirements of EU regulations, such as the Renewable Energy Directive and the need to monitor progress in achieving climate and energy goals in various sectors of the economy, the shares of energy from renewable sources have been divided into sectors such as electricity, transport, and heating and cooling (Dziennik Ustaw, 2024). The Electricity sector refers to using renewable energy sources (RES) to produce electricity. This sector's leading renewable energy sources are wind, solar, geothermal hydropower, ocean, biomass, and biogas. This sector's data is broken down into Hydro, Wind, Solar, Solid biofuels, and all other renewables. The next sector – Transport – is a key area in the energy transformation because itis responsible for a significant part of global greenhouse gas emissions. The introduction of renewable energy sources in this sector is aimed at reducing CO2 emissions, reducing pollution, and limiting mining resources. The renewable energy sources within this sector are biofuels (biodiesel, bioethanol), biogas, renewable hydrogen (green choice), and energy produced from organic and industrial waste. The third sector is Heating and Cooling, which includes heating or cooling energy production and supply. Renewable energy comes here from, among others, biomass, biogas, geothermal energy, heat pumps, solar collectors, wind turbines, and hydroelectric power plants. The Renewable Energy Directive (RED I, RED II) requirements regulate the development of renewable energy sources (RES) in the European Union. Their main goal is to promote the use of energy from renewable sources to achieve sustainable development, reduce greenhouse gas emissions, and increase energy security.

The electricity sector plays a key role in the energy transition and achieving renewable energy goals. For this reason, the study analyzed the share of renewable energy sources in Poland and the European Union. It determined the dynamics of changes in the share of renewable energy sources, taking into account the division into factors of the energy mix of the Electricity sector: wind, hydro, solar, and solar biofuels. Additionally, short-term forecasts were estimated, which may indicate actions to achieve the objectives of Directive (EU) 2018/2001. Considering these analyses will allow us to present the situation of Poland and the entire European Union in the context of the current possibilities of obtaining energy from renewable sources. It may also determine new action directions towards energy security, sustainable development, or reducing the negative environmental impact.

# 2. Analysis of the share of energy from renewable sources in the Electricity sector in Poland

Below is data obtained from Eurostat - the official statistical database of the European Union, which collects and provides statistical data on, among others, EU Member States. These data concern the electricity produced from renewable sources within the Electricity sector (Total (RES-E numerator)). The first part of the analysis includes data for Poland regarding the division of renewable sources within the electricity sector, the second part concerns the shares of the entire European Union, and the next part determines the location of Poland's shares in the European Union.

Table 1 presents data from 2004-2023 of the Electricity sector, divided into Hydro, Wind, Solar, Solid biofuels, and all other renewables (the data unit is ktoe, where one ktoe = 11.63 GWh).

|      | Hydro    | Wind     | Solar    | Solid biofuels | All other renewables | Sum      |
|------|----------|----------|----------|----------------|----------------------|----------|
| 2004 | 157.9462 | 10.00582 | 0        | 77.09966       | 7.401118             | 252.4528 |
| 2005 | 163.9889 | 17.47881 | 0        | 120.3654       | 9.5681               | 311.4012 |
| 2006 | 169.0568 | 27.95813 | 0        | 157.5813       | 13.76784             | 368.364  |
| 2007 | 172.5635 | 45.11882 | 0        | 202.9544       | 16.78538             | 437.4222 |
| 2008 | 177.9279 | 73.60088 | 0        | 289.1965       | 21.91548             | 562.6407 |
| 2009 | 182.1233 | 100.1006 | 0        | 421.6778       | 27.70482             | 731.6066 |
| 2010 | 188.7115 | 146.1987 | 0        | 507.7567       | 34.3319              | 876.9988 |
| 2011 | 191.8441 | 251.2468 | 0.015047 | 614.65         | 38.79037             | 1096.546 |
| 2012 | 193.4591 | 387.8161 | 0.098108 | 819.32         | 48.61204             | 1449.305 |
| 2013 | 195.4322 | 527.306  | 0.127429 | 682.0137       | 59.30499             | 1464.184 |
| 2014 | 197.9022 | 651.2055 | 0.592519 | 787.6358       | 70.18676             | 1707.523 |
| 2015 | 197.922  | 832.9722 | 4.870077 | 776.1513       | 77.93646             | 1889.852 |
| 2016 | 199.2501 | 1035.329 | 10.65133 | 594.3875       | 89.45168             | 1929.07  |

#### Table 1.

The share of energy from renewable sources in the Electricity sector in Poland

| 2017 | 199.1066 | 1166.876 | 14.22726 | 456.4537 | 101.2122 | 1937.876 |
|------|----------|----------|----------|----------|----------|----------|
| 2018 | 200.943  | 1174.195 | 25.83732 | 458.5745 | 104.2688 | 1963.819 |
| 2019 | 200.6005 | 1224.5   | 61.10688 | 553.8394 | 106.6074 | 2146.654 |
| 2020 | 199.6951 | 1294.331 | 168.3505 | 596.1096 | 121.7237 | 2380.21  |
| 2021 | 199.8544 | 1422.026 | 338.3016 | 550.1651 | 142.9797 | 2653.327 |
| 2022 | 199.0943 | 1628.076 | 714.503  | 510.2406 | 145.9231 | 3197.837 |
| 2023 | 200.4808 | 1968.277 | 955.0377 | 490.5353 | 150.9079 | 3765.239 |

Cont. table 1

Source: https://ec.europa.eu/eurostat/web/energy/database/additional-data#Short%20assessment%20of %20renewable%20energy%20sources%20.

Based on the data presented in the table above, the share of energy from renewable sources is presented in Figure 1. On this basis, it is possible to determine the increasing trend of energy shares within the Electricity sector over the years 2004-2023.

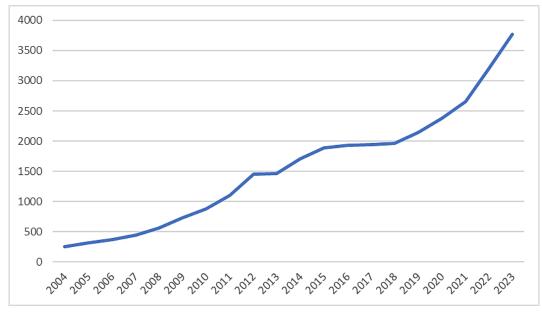



Figure 1. The share of energy from renewable sources in the Electricity sector in Poland.

Source: own study based on https://ec.europa.eu/eurostat/web/energy/database/additional-data#Short% 20assessment%20of%20renewable%20energy%20sources%20.

Based on the chart above, significant increases can be observed yearly until 2012. After this period, until 2018, there was a period of slowdown in growth. Only after 2019 did the share increase return, but it was smaller than at the beginning of the analyzed period. The most significant increase in the share of energy occurred in 2019, recording an increase of 30.03% (an increase from 562.64 to 731.61 ktoe).

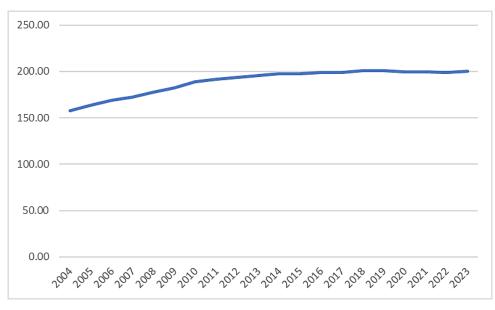



Figure 2. The share of energy from renewable sources as part of the Hydro source in Poland.

Source: own study based on https://ec.europa.eu/eurostat/web/energy/database/additional-data#Short% 20assessment%20of%20renewable%20energy%20sources%20.

In the case of Hydro energy shares, from the beginning of 2023 can be observed (with a decreasing trend) until 2016. After this period, there were minimal year-to-year declines in Hydro energy shares. The most significant increase occurred in 2005 - 23.35% compared to 2004 (an increase from 157.95 to 163.99). From 2017 to 2022, there were decreases in shares or minimal increases - below 1%.

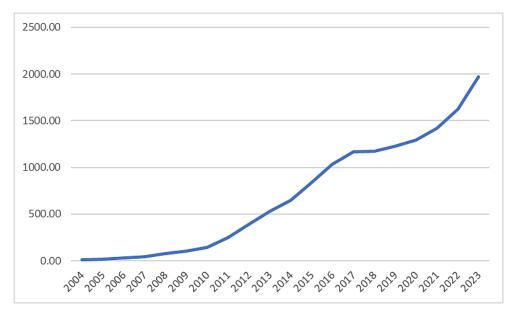



Figure 3. The share of energy from renewable sources as part of the Wind source in Poland.

Source: own study based on https://ec.europa.eu/eurostat/web/energy/database/additional-data#Short% 20assessment%20of%20renewable%20energy%20sources%20.

An increase characterizes the share of energy in wind, which is quite uneven between the years 2004-2011, 2011-2018, and 2018-2023. The most significant increases can be observed in 2005 - an increase of 74.69% compared to 2004 (an increase from 10.01 to 17.48 ktoe) and

in 2011 – an increase of 71.85% in the share of energy compared to 2010 (an increase from 146.2 to 251.25 ktoe). The smallest increase took place in 2018 - an increase of 0.63% compared to 2017.

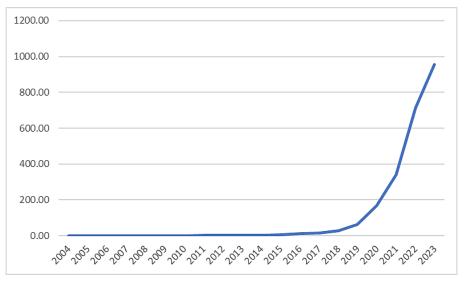



Figure 4. The share of energy from renewable sources as part of the Solar source in Poland.

Source: own study based on https://ec.europa.eu/eurostat/web/energy/database/additional-data#Short% 20assessment%20of%20renewable%20energy%20sources%20.

The shares of energy from renewable sources under Solar were zero until 2010; the first indications of obtaining energy from this source were recorded only in 2011. A share increase can be observed during this period - from 0 in 2010 to 995.04 ktoe in 2023.

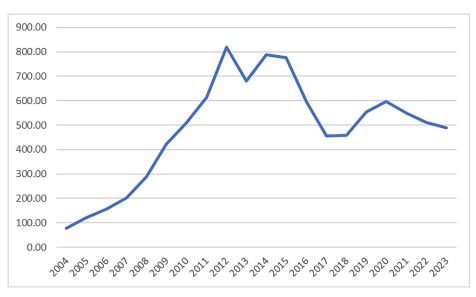
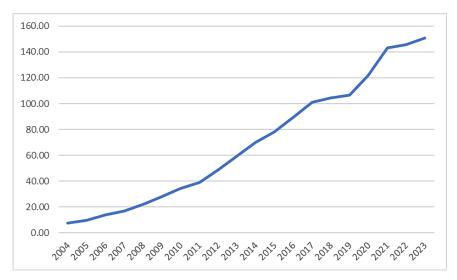
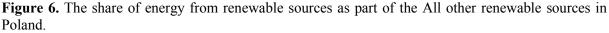





Figure 5. The share of energy from renewable sources solid biofuels in Poland.

Source: *own study based on* https://ec.europa.eu/eurostat/web/energy/database/additional-data#Short% 20assessment%20of%20renewable%20energy%20sources%20.

The graph of the energy share from Solid biofuels shows an increase, reaching its maximum value in 2012 (819.32 ktoe). After this period, the energy share values started to decline and then stabilized with some fluctuations. The largest increase took place in 2005—an increase of 56.12% compared to 2004. The largest decrease in energy from Solid biofuels was recorded in 2016 - 23.42% compared to 2015.





Source: own study based on https://ec.europa.eu/eurostat/web/energy/database/additional-data#Short% 20assessment%20of%20renewable%20energy%20sources%20.

All other renewable energy shares are characterized by a gradual and quite regular increase from 7.40 to 150.91 ktoe. The largest increase took place in 2006—an increase of 43.89% compared to 2005.

Table 2 presents the shares of energy from renewable sources, divided into components of the electricity sector, and the estimated percentage changes from year to year are prese ted. The presented results can be used for a broader analysis compared to the analysis in Figure 1-6.

#### Table 2.

Values of shares of energy from renewable sources, along with the percentage change from year to year, divided into factors of the Electricity sector in Poland

| Year | Electricity | percentage<br>change | Hydro  | percentage<br>change | Wind   | percentage<br>change | Solar | percentage<br>change | Solid<br>biofuels | percentage<br>change | All other<br>renewables | percentage<br>change |
|------|-------------|----------------------|--------|----------------------|--------|----------------------|-------|----------------------|-------------------|----------------------|-------------------------|----------------------|
| 2004 | 252.45      | -                    | 157.95 | -                    | 10.01  | -                    | 0.00  | -                    | 77.10             | -                    | 7.40                    | -                    |
| 2005 | 311.40      | 23.35%               | 163.99 | 3.83%                | 17.48  | 74.69%               | 0.00  | -                    | 120.37            | 56.12%               | 9.57                    | 29.28%               |
| 2006 | 368.36      | 18.29%               | 169.06 | 3.09%                | 27.96  | 59.95%               | 0.00  | -                    | 157.58            | 30.92%               | 13.77                   | 43.89%               |
| 2007 | 437.42      | 18.75%               | 172.56 | 2.07%                | 45.12  | 61.38%               | 0.00  | -                    | 202.95            | 28.79%               | 16.79                   | 21.92%               |
| 2008 | 562.64      | 28.63%               | 177.93 | 3.11%                | 73.60  | 63.13%               | 0.00  | -                    | 289.20            | 42.49%               | 21.92                   | 30.56%               |
| 2009 | 731.61      | 30.03%               | 182.12 | 2.36%                | 100.10 | 36.00%               | 0.00  | -                    | 421.68            | 45.81%               | 27.70                   | 26.42%               |
| 2010 | 877.00      | 19.87%               | 188.71 | 3.62%                | 146.20 | 46.05%               | 0.00  | -                    | 507.76            | 20.41%               | 34.33                   | 23.92%               |
| 2011 | 1096.55     | 25.03%               | 191.84 | 1.66%                | 251.25 | 71.85%               | 0.02  | -                    | 614.65            | 21.05%               | 38.79                   | 12.99%               |
| 2012 | 1449.31     | 32.17%               | 193.46 | 0.84%                | 387.82 | 54.36%               | 0.10  | 552.00%              | 819.32            | 33.30%               | 48.61                   | 25.32%               |
| 2013 | 1464.18     | 1.03%                | 195.43 | 1.02%                | 527.31 | 35.97%               | 0.13  | 29.89%               | 682.01            | -16.76%              | 59.30                   | 22.00%               |

| 2014 | 1707.52 | 16.62% | 197.90 | 1.26%  | 651.21  | 23.50% | 0.59   | 364.98% | 787.64 | 15.49%  | 70.19  | 18.35% |
|------|---------|--------|--------|--------|---------|--------|--------|---------|--------|---------|--------|--------|
| 2015 | 1889.85 | 10.68% | 197.92 | 0.01%  | 832.97  | 27.91% | 4.87   | 721.93% | 776.15 | -1.46%  | 77.94  | 11.04% |
| 2016 | 1929.07 | 2.08%  | 199.25 | 0.67%  | 1035.33 | 24.29% | 10.65  | 118.71% | 594.39 | -23.42% | 89.45  | 14.78% |
| 2017 | 1937.88 | 0.46%  | 199.11 | -0.07% | 1166.88 | 12.71% | 14.23  | 33.57%  | 456.45 | -23.21% | 101.21 | 13.15% |
| 2018 | 1963.82 | 1.34%  | 200.94 | 0.92%  | 1174.20 | 0.63%  | 25.84  | 81.60%  | 458.57 | 0.46%   | 104.27 | 3.02%  |
| 2019 | 2146.65 | 9.31%  | 200.60 | -0.17% | 1224.50 | 4.28%  | 61.11  | 136.51% | 553.84 | 20.77%  | 106.61 | 2.24%  |
| 2020 | 2380.21 | 10.88% | 199.70 | -0.45% | 1294.33 | 5.70%  | 168.35 | 175.50% | 596.11 | 7.63%   | 121.72 | 14.18% |
| 2021 | 2653.33 | 11.47% | 199.85 | 0.08%  | 1422.03 | 9.87%  | 338.30 | 100.95% | 550.17 | -7.71%  | 142.98 | 17.46% |
| 2022 | 3197.84 | 20.52% | 199.09 | -0.38% | 1628.08 | 14.49% | 714.50 | 111.20% | 510.24 | -7.26%  | 145.92 | 2.06%  |
| 2023 | 3765.24 | 17.74% | 200.48 | 0.70%  | 1968.28 | 20.90% | 955.04 | 33.66%  | 490.54 | -3.86%  | 150.91 | 3.42%  |
|      |         |        |        |        |         |        |        |         |        |         |        |        |

Cont. table 2.

Source: own study based on https://ec.europa.eu/eurostat/web/energy/database/additional-data# Short%20assessment%20of%20renewable%20energy%20sources%20.

Based on the data presented in Table 1, forecasts for the share of energy from renewable sources in the Electricity sector were estimated for the following years. Due to the upward nature of the time series, an analytical model is presented. In order to compare the results, the analysis was based on five functions: linear, polynomial, power, logarithmic, and exponential. In the further part of the analysis, the error values described by the formulas were determined (1)-(4) (Zeliaś, Pawełek, Wanat, 2022).

a) Mean Absolute Error

$$MAE = \frac{1}{n} \cdot \sum_{i=1}^{n} |y_t - \hat{y_t}|$$
(1)

b) Mean Absolute Percentage Error

$$MAPE = \frac{1}{n} \cdot \sum_{i=1}^{n} \left| \frac{y_t - \widehat{y}_t}{y_t} \right| \cdot 100\%$$
<sup>(2)</sup>

c) Root Mean Squared Error

$$RMSE = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (y_t - \hat{y}_t)^2}$$
(3)

d) Root mean Squared Percentage Error

$$RMSPE = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} \left(\frac{y_t - \widehat{y_t}}{y_t}\right)^2} \cdot 100\%$$
(4)

Table 3 below presents the values of the estimated forecasts for 2024-2028, the error values of these forecasts, the standard error of model estimation, and the coefficient of determination.

#### Table 3.

Forecasted values of energy shares from renewable sources along with estimated errors, standard error of model estimation, coefficient of determination for Poland

|                | Linear<br>model                            | Polynomial model                                    | Power model                | Logarithmic<br>model                   | Exponential model                   |
|----------------|--------------------------------------------|-----------------------------------------------------|----------------------------|----------------------------------------|-------------------------------------|
| Trend function | $\hat{y}$<br>= 163.17 <i>x</i><br>- 157.13 | $\hat{y}$<br>= 3.91 · $x^2$ + 81.14 $x$<br>+ 143.63 | $\hat{y} = 155.47x^{0.97}$ | $\hat{y}$<br>= 1062.8 ln(x)<br>- 693.6 | $\hat{y} = 301.25 \cdot e^{0.132x}$ |
| Forecast 2024  | 3269.360                                   | 3570.121                                            | 2953.824                   | 2542.120                               | 4814.083                            |
| Forecast 2025  | 3432.526                                   | 3819.219                                            | 3089.754                   | 2591.561                               | 5493.225                            |
| Forecast 2026  | 3595.692                                   | 4076.129                                            | 3225.480                   | 2638.804                               | 6268.178                            |
| Forecast 2027  | 3758.858                                   | 4340.851                                            | 3361.012                   | 2684.037                               | 7152.456                            |
| Forecast 2028  | 3922.024                                   | 4613.385                                            | 3496.359                   | 2727.422                               | 8161.483                            |
| MAE            | 163.520                                    | 147.332                                             | 168.264                    | 358.914                                | 262.033                             |
| MAPE           | 15.72%                                     | 9.85%                                               | 13.41%                     | 47.75%                                 | 18.00%                              |
| RMSE           | 218.898                                    | 185.807                                             | 266.016                    | 473.682                                | 317.827                             |
| RMSPE          | 26.18%                                     | 11.11%                                              | 17.63%                     | 93.01%                                 | 19.87%                              |

| Standard error of model estimation | 230.739 | 201.535 | 280.405 | 499.305 | 335.019 |
|------------------------------------|---------|---------|---------|---------|---------|
| Coefficient of determination       | 0.9487  | 0.963   | 0.9469  | 0.7595  | 0.9343  |
|                                    |         |         |         |         |         |

Cont. table 3

Source: own study based on https://ec.europa.eu/eurostat/web/energy/database/additional-data# Short%20assessment%20of%20renewable%20energy%20sources%20.

Based on the estimated forecast errors, the polynomial model shows the minor errors for all measures: MAE = 147.332 ktoe (the forecast values differ on average by about 147.332 ktoe from the actual values), MAPE = 9.85% (the average forecast error of the model is approximately 9.85% of the actual energy share values ), RMSE = 185.807 ktoe (on average, the forecasts differ from the actual values by approximately 185.807 ktoe), RMSPE = 11.11% (on average, this model's forecasts differ from the actual values by approximately 185.807 ktoe), which suggests that it fits the data best. In terms of the MAE error and RMSE error values, the linear model obtained the second lowest value - MAE = 163.52, RMSE = 218.898, and the power model had the third lowest value - MAE = 168.264, RMSE = 266.016. Due to the MAPE and RMSPE error, the second smallest value was obtained for the power model: MAPE = 13.41\%, RMSPE = 17.63\%, while the third smallest value of the MAPE and RMSPE error was obtained for the linear model: MAPE = 15.72\%, RMSPE = 26.18\%. The logarithmic and exponential models obtained the poorest results due to the errors adopted for model evaluation, the standard error of model estimation, and the coefficient of determination.

# **3.** Analysis of the share of energy from renewable sources in the Electricity sector in the European Union

The rest of the article is devoted to analyzing the shares of energy from renewable sources in the Electricity sector throughout the European Union. Table 4 below presents the share of individual energy sources within the analyzed Electricity sector.

| Year | Hydro    | Wind     | Solar    | Solid biofuels | All other renewables | Sum      |
|------|----------|----------|----------|----------------|----------------------|----------|
| 2004 | 29209.01 | 4783.324 | 59.40782 | 3116.968       | 1936.829             | 39105.54 |
| 2005 | 29309.81 | 5733.508 | 125.4246 | 3489.555       | 2263.442             | 40921.74 |
| 2006 | 29180.54 | 6783.305 | 214.0559 | 3883.316       | 2649.352             | 42710.57 |
| 2007 | 29259.99 | 8180.863 | 324.5509 | 4098.627       | 3183.681             | 45047.72 |
| 2008 | 29202.98 | 9568.501 | 639.5203 | 4572.556       | 3534.408             | 47517.97 |
| 2009 | 29308.17 | 10978.45 | 1212.724 | 4930.917       | 3945.422             | 50375.68 |
| 2010 | 29628.52 | 12442.35 | 1996.91  | 5587.447       | 4530.596             | 54185.83 |
| 2011 | 29632.79 | 13968.62 | 4066.082 | 5772.239       | 5012.31              | 58452.04 |
| 2012 | 29507.67 | 15574.03 | 6034.099 | 6196.926       | 5760.286             | 63073.01 |
| 2013 | 29516.8  | 17280.99 | 7231.683 | 6062.111       | 6439.401             | 66530.98 |

#### Table 4.

The share of energy from renewable sources in the Electricity sector in UE

| 2014 | 29462.78 | 18995.78 | 8097.036 | 6080.291 | 6906.297 | 69542.18 |
|------|----------|----------|----------|----------|----------|----------|
| 2015 | 29663.73 | 21455.14 | 8672.237 | 6194.86  | 7262.37  | 73248.33 |
| 2016 | 29596.59 | 23384.59 | 8687.407 | 6223.371 | 7392.303 | 75284.26 |
| 2017 | 29462.59 | 25710.3  | 9280.453 | 6385.329 | 7459.23  | 78297.89 |
| 2018 | 29559.81 | 27524.33 | 9718.66  | 6556.527 | 7447.706 | 80807.04 |
| 2019 | 29509.63 | 29954.82 | 10643.44 | 6926.871 | 7460.777 | 84495.53 |
| 2020 | 29685.34 | 32367.68 | 12465.55 | 7139.495 | 7512.742 | 89170.81 |
| 2021 | 29817.04 | 34930.84 | 14123    | 7499.54  | 7651.319 | 94021.73 |
| 2022 | 29673.64 | 37263.96 | 18106.02 | 6869.266 | 7465.675 | 99378.56 |
| 2023 | 27724.68 | 38256.98 | 20801.75 | 5590.294 | 6813.437 | 99187.14 |

Cont. table 4.

Source: https://ec.europa.eu/eurostat/web/energy/database/additional-data#Short%20assessment%20of % 20renewable%20energy%20sources%20.

Figure 7 presents the total share of energy from renewable sources. Visual analysis allows us to determine the increasing nature of the energy share over the years 2004 - 2023, with some random fluctuations.

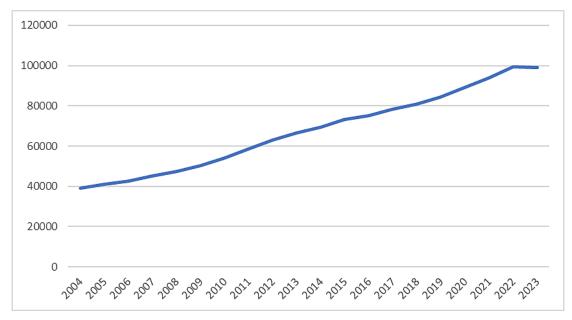



Figure 7. The share of energy from renewable sources in the Electricity sector in UE.

Source: *own study based on* https://ec.europa.eu/eurostat/web/energy/database/additional-data#Short% 20assessment%20of%20renewable%20energy%20sources%20.

Based on the visual assessment and determining the increasing nature of the data, an analytical model was proposed to forecast the share of energy from renewable sources in the Electricity sector for the years 2024-2028. The analysis was based on five functions: linear, polynomial, power, logarithmic, and exponential. Table 5 presents the calculated forecast values based on the mentioned trend line functions, error values, standard error of model estimation, and coefficient of determination.

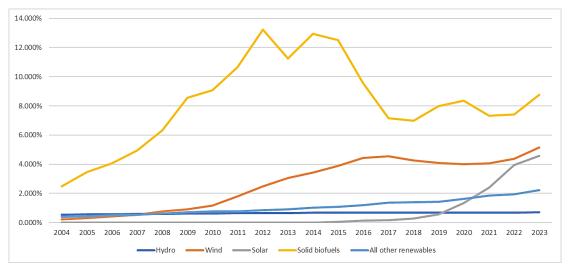
#### Table 5.

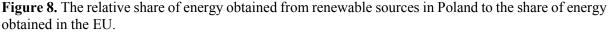
Forecasted values of the shares of energy from renewable sources within the Electricity sector along with estimation errors, standard error of model estimation, and coefficient of determination for the EU

|                                    | Linear model                      | Polynomial<br>model                                    | Power<br>model            | Logarithmic<br>model                  | Exponential<br>model              |
|------------------------------------|-----------------------------------|--------------------------------------------------------|---------------------------|---------------------------------------|-----------------------------------|
| Trend function                     | $\hat{y}$<br>= 3342.6x<br>+ 32470 | $\hat{y}$<br>= 28.274 $x^2$<br>+ 2748.9 $x$<br>+ 34647 | $\hat{y} = 30447x^{0.35}$ | $\hat{y}$<br>= 22190 ln(x)<br>+ 20596 | $\hat{y} = 37712 \cdot e^{0.05x}$ |
| Forecast 2024                      | 102665.377                        | 104842.457                                             | 90057.249                 | 88154.332                             | 111050.566                        |
| Forecast 2025                      | 106008.010                        | 108807.113                                             | 91561.972                 | 89186.612                             | 116911.173                        |
| Forecast 2026                      | 109350.644                        | 112828.317                                             | 93023.280                 | 90172.998                             | 123081.070                        |
| Forecast 2027                      | 112693.277                        | 116906.068                                             | 94444.235                 | 91117.397                             | 129576.578                        |
| Forecast 2028                      | 116035.910                        | 121040.366                                             | 95827.566                 | 92023.237                             | 136414.882                        |
| MAE                                | 1217.811                          | 1124.493                                               | 4726.478                  | 6650.212                              | 1759.675                          |
| MAPE                               | 2.08%                             | 1.80%                                                  | 7.53%                     | 11.26%                                | 2.60%                             |
| RMSE                               | 1530.827                          | 1281.294                                               | 5864.219                  | 8055.092                              | 2253.087                          |
| RMSPE                              | 2.84%                             | 2.10%                                                  | 9.38%                     | 15.09%                                | 3.08%                             |
| Standard error of model estimation | 1613.634                          | 1389.759                                               | 6181.430                  | 8490.813                              | 2374.963                          |
| Coefficient of determination       | 0.9937                            | 0.9956                                                 | 0.8956                    | 0.8264                                | 0.9893                            |

Source: *own study based on* https://ec.europa.eu/eurostat/web/energy/database/additional-data#Short% 20assessment%20of%20renewable%20energy%20sources%20.

Analyzing the values of the errors obtained, the polynomial model shows the best fit: MAE = 1124.493 ktoe (the predicted values differ on average by about 1124.493 ktoe from the actual values), MAPE = 1.80% (the average error of the model forecasts is about 1.80% of the actual values of the energy share, this is very low error rate, suggesting that this model's predictions are accurate), RMSE = 1281.294 ktoe (on average, the forecasts differ from the actual values by approximately 1281.294 ktoe) and RMSPE = 2.10% (the forecasts of this model on average differ from the actual values by 2.10% - a very low level of error). Guided by the error minimization criterion, the forecast values of the share of energy from renewable sources within the Electricity sector are: 104842.457 ktoe (2024), 108807.113 ktoe (2025), 112828.317 ktoe (2026), 116906.068 ktoe (2027), 121040.366 ktoe (2028). The second model with the lowest error value is the linear model with error values at the following levels: MAE = 1217.811, MAPE = 2.08%, RMSE = 1530.827 and RMSPE = 2.84%. The third model with the most minor errors is the exponential model: MAE = 1759.675, MAPE = 2.60%, RMSE = 2253.087 and RMSPE = 3.08%. The logarithmic model achieved the highest error values.


#### Table 6.


*The relative share of energy obtained from renewable sources in Poland to the share of energy obtained in the EU* 

|      | Hydro  | Wind   | Solar  | Solid biofuels | All other renewables |
|------|--------|--------|--------|----------------|----------------------|
| 2004 | 0.541% | 0.209% | 0.000% | 2.474%         | 0.382%               |
| 2005 | 0.560% | 0.305% | 0.000% | 3.449%         | 0.423%               |
| 2006 | 0.579% | 0.412% | 0.000% | 4.058%         | 0.520%               |
| 2007 | 0.590% | 0.552% | 0.000% | 4.952%         | 0.527%               |
| 2008 | 0.609% | 0.769% | 0.000% | 6.325%         | 0.620%               |
| 2009 | 0.621% | 0.912% | 0.000% | 8.552%         | 0.702%               |
| 2010 | 0.637% | 1.175% | 0.000% | 9.087%         | 0.758%               |
| 2011 | 0.647% | 1.799% | 0.000% | 10.648%        | 0.774%               |
| 2012 | 0.656% | 2.490% | 0.002% | 13.221%        | 0.844%               |
| 2013 | 0.662% | 3.051% | 0.002% | 11.250%        | 0.921%               |
| 2014 | 0.672% | 3.428% | 0.007% | 12.954%        | 1.016%               |
| 2015 | 0.667% | 3.882% | 0.056% | 12.529%        | 1.073%               |
| 2016 | 0.673% | 4.427% | 0.123% | 9.551%         | 1.210%               |
| 2017 | 0.676% | 4.539% | 0.153% | 7.148%         | 1.357%               |
| 2018 | 0.680% | 4.266% | 0.266% | 6.994%         | 1.400%               |
| 2019 | 0.680% | 4.088% | 0.574% | 7.996%         | 1.429%               |
| 2020 | 0.673% | 3.999% | 1.351% | 8.349%         | 1.620%               |
| 2021 | 0.670% | 4.071% | 2.395% | 7.336%         | 1.869%               |
| 2022 | 0.671% | 4.369% | 3.946% | 7.428%         | 1.955%               |
| 2023 | 0.723% | 5.145% | 4.591% | 8.775%         | 2.215%               |

Source: *own study based on* https://ec.europa.eu/eurostat/web/energy/database/additional-data#Short% 20assessment%20of%20renewable%20energy%20sources%20

Below, in Figure 8, Poland's share in energy obtained from renewable sources in the Electricity sector, divided into energy sources, is visualized compared to the entire EU. The relative share of Poland's energy from the hydro source increased in subsequent years of the analyzed period, but it did not exceed 0.8% in any year (the largest share in 2023 at 0.723%). Poland's share of wind sources also shows an upward trend, but it is characterized by a higher percentage share: from 0.209% in 2004 to 5.145% in 2023. Obtaining energy from solar sources in Poland looks unfavorable because the energy level will be zero by 2010. After this period, there was an increase to 4.591% in 2023 (slightly less than the Wind source). The percentage share of energy from solid biofuels varies significantly. After an increase of 12.954% in 2014, it decreased to 9.551%, and the relative share remained at 6.994% - 8.775%. The relative share of energy from All other renewables showed an increasing trend, reaching the highest percentage level of 2.215%. It seems reasonable to extend the analysis of the achieved shares of energy from renewable sources about the actions taken or changes introduced by the authorities dealing with energy in Poland in order to better determine the trend in changes in the amount of energy obtained.





Source: *own study based on* https://ec.europa.eu/eurostat/web/energy/database/additional-data#Short% 20assessment%20of%20renewable%20energy%20sources%20.

## 4. Summary

Poland and the European Union consistently increase their share of renewable energy in the electricity sector. The analysis of the share of energy in Poland within RES indicates an increase in the share in hydro, wind, solar, and only solid biofuels after 2012, continuing the downward trend until 2017 and remaining at this level until 2023. Poland's share compared to the European Union:

- Poland took 10th place in the relative share of energy within the Electricity sector at the level of 2.82% (the most significant shares were Germany 22.83%, Spain 11.44% and France 11.44%),
- in 2022, Poland ranked 9th with a relative share of 3.22% (the most significant shares were Germany 22.61%, Spain 11.81% and France 11.43%),
- in 2023, Poland was in 8th place with a share of 3.8% (the most significant shares were Germany 23.35%, Spain 13.12% and France 12.21%).

For Poland to improve its situation in the context of renewable energy, it should take specific actions in various areas of energy, regulatory and investment policy, and the development of new technologies. It should also consider financial support and education.

## References

- Acedański, J., Hadaś-Dyduch, M., Szkutnik, W. (2016). Prognozowanie zjawisk ekonomicznych i finansowych. Część 1. Prognozowanie z Excelem. Katowice: Wydawnictwo Uniwersytet Ekonomiczny w Katowicach.
- 2. Brodziński, Z., Kramarz, M., Sławomirski, M.R. (Eds.) (2016). *Energetyka odnawialna wizytówką nowoczesnej gospodarki*. Toruń: Adam Marszałek.
- 3. Bukowski, M. (2012). *Efektywność ekonomiczna produkcji energii w małych elektrowniach wodnych*. Raszyn: ITP.
- Dubel, A. (2016). Klasyfikacje kosztów zapobiegania zmianom klimatu i adaptacja do nich oraz ich znaczenie dla podejmujących strategiczne decyzje. In: T. Walczykiewicz (Ed.), *Problemy planowania w gospodarce wodnej i oceny stanu hydromorfologicznego rzek*. Warszawa: IMGW-PIB.
- 5. EUR-Lex (2024). Retrieved from: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/ ?uri=CELEX%3A32009L0028.
- 6. IEA (2024). Retrieved from: https://www.iea.org.
- Jabłoński, W., Wnuk, J. (2004). Odnawialne źródła energii w polityce energetycznej Unii Europejskiej i Polski. Efektywne zarządzanie inwestycjami - studia przypadków. Sosnowiec: Wydawnictwo Wyższej Szkoły Zarządzania i Marketingu w Sosnowcu.
- 8. Kundzewicz, Z., Hov, O., Okruszko, T. (Eds.) (2017). *Zmiany klimatu i ich wpływ na wybrane sektory w Polsce*. Poznań: Instytut Środowiska Rolniczego i Leśnego Polskiej Akademii Nauk.
- 9. Kurałowicz, Z. (Ed.) (2012). *Techniczne aspekty ochrony środowiska. Woda źródłem energii*. Gdańsk: Wydawnictwo Politechniki Gdańskiej.
- Nazarko, J. (Eds.) (2018). Prognozowanie w zarzadzaniu przedsiębiorstwem. Cz. IV. Prognozowanie na podstawie modeli trendu. Białystok: Oficyna Wydawnicza Politechniki Białostockiej.
- Obwieszczenie Marszałka Sejmu Rzeczypospolitej Polskiej z dnia 19.08.2024 r. w sprawie ogłoszenia jednolitego tekstu ustawy o odnawialnych źródłach energii. Dziennik Ustaw, Poz. 1361 (2024). Retrieved from: https://dziennikustaw.gov.pl/D2024000136101.pdf
- 12. Pietkun-Greber, I., Ratuszny, P. (Eds.) (2017). *Odnawialne źródła energii. Teoria i praktyka. Tom II.* Brzesko: COTI Conference Time Stanisław Kurtyka.
- 13. Pobrzeżyńska, M. (2020). Pomoc państwa na produkcję energii ze źródeł odnawialnych w prawie Unii Europejskiej. Warszawa: C.H. Beck.
- 14. SHARES (2024). Retrieved from: https://ec.europa.eu/eurostat/web/energy/database/ additional-data#Short%20assessment%20of%20renewable%20energy%20sources%20.
- 15. Słodczyk, E. (2017). Funkcjonowanie elektrowni geotermalnych oraz ich wpływ na środowisko przyrodnicze na przykładzie elektrowni działających na Islandii. In: I. Pietkun-

Greber, P. Ratuszny (Eds.), *Odnawialne źródła energii. Teoria i praktyka. Tom II.* Brzesko: COTI Conference Time Stanisław Kurtyka.

- 16. Surmacz, B., Paszkowski, M. (Eds.) (2023). *Raport. Bezpieczeństwo energetyczne państwa Europy Środkowej i Wschodniej*. Lublin: Instytut Europy Środkowej.
- 17. Szafrański, A. (2004). *Prawo energetyczne. Wartości i instrumenty ich realizacji.* Warszawa: C.H. Beck.
- 18. Wiśniewski, J.W. (2020). *Prognozowanie z wielorównaniowych mikromodeli ekonometrycznych*. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika.
- 19. Zeliaś, A., Pawełek, B., Wanat, S. (2022). *Prognozowanie ekonomiczne. Teoria, przykłady, zadania.* Warszawa: PWN.