SCIENTIFIC PAPERS OF SILESIAN UNIVERSITY OF TECHNOLOGY ORGANIZATION AND MANAGEMENT SERIES NO. 210

THE USAGE OF PDCA CYCLE IN INDUSTRY 4.0 CONDITIONS

Radosław WOLNIAK^{1*}, Ireneusz TOMECKI²

¹ Silesian University of Technology, Organization and Management Department, Economics and Informatics Institute; rwolniak@polsl.pl, ORCID: 0000-0003-0317-9811

² Silesian University of Technology, Organization and Management Department, Economics and Informatics Institute; ireneusz.tomecki@polsl.pl, ORCID: 0000-0003-1816-767X

 \ast Correspondence author

Purpose: The purpose of this publication is to present the usage of PDCA Cycle in Industry 4.0 conditions.

Design/methodology/approach: Critical literature analysis. Analysis of international literature from main databases and polish literature and legal acts connecting with researched topic.

Findings: This paper explores the integration of the PDCA Cycle with Industry 4.0 and Quality 4.0 concepts, highlighting how the systematic approach of the PDCA Cycle can be significantly enhanced by the technological advancements associated with Industry 4.0. Industry 4.0, characterized by the use of IoT, big data analytics, AI, and automation, aligns with the iterative nature of the PDCA Cycle to facilitate more precise planning, efficient execution, and real-time evaluation of processes. The study details how this integration promotes continuous improvement by leveraging real-time data and advanced analytics to inform decision-making and enhance quality management. It also addresses the challenges of implementing these technologies, such as high costs and complexity in data management, proposing strategies to overcome these obstacles. Ultimately, the paper demonstrates that combining the PDCA Cycle with Industry 4.0 and Quality 4.0 not only drives operational excellence and innovation but also helps organizations adapt swiftly to dynamic market conditions.

Originality/Value: Detailed analysis of all subjects related to the problems connected with the usage of PDCA Cycle in Industry 4.0 conditions.

Keywords: Industry 4.0; Quality 4.0, quality management; quality methods, PDCA Cycle. **Category of the paper:** literature review.

1. Introduction

The relationship between Industry 4.0 and the PDCA Cycle is one of mutual reinforcement, where the principles of continuous improvement inherent in the PDCA Cycle are significantly enhanced by the technological advancements of Industry 4.0. Industry 4.0, characterized by the integration of digital technologies such as the Internet of Things (IoT), big data analytics,

artificial intelligence (AI), and cyber-physical systems, revolutionizes how businesses operate, offering unprecedented levels of automation, real-time data collection, and analysis. These advancements align closely with the systematic approach of the PDCA Cycle, enabling more efficient and informed decision-making throughout the cycle's phases.

Industry 4.0 enhances the effectiveness of the PDCA Cycle by providing the tools and technologies necessary for more precise planning, efficient execution, thorough evaluation, and rapid adaptation. This integration allows organizations to achieve higher levels of quality and efficiency, driving continuous improvement in a highly competitive and fast-paced industrial environment (Barsalou, 2023; Maganga, Taifa, 2023).

The purpose of this publication is to present the usage of PDCA cycle approach in Industry 4.0 condition.

2. The basics of PDCA Cycle approach

The PDCA Cycle, also known as the Deming Cycle or Shewhart Cycle, is a systematic and iterative method used in business process management and continuous improvement. This approach is central to quality management and is designed to facilitate the identification and resolution of issues in a methodical manner, ensuring that processes are continuously refined and enhanced.

The PDCA Cycle consists of four distinct phases: Plan, Do, Check, and Act. Each phase has a specific purpose and set of activities that contribute to the overall goal of improving processes.

The first phase, Plan, involves identifying an opportunity for improvement or a problem that needs to be addressed. During this phase, teams conduct an analysis of the current situation to understand the underlying causes of the issue. This might include data collection, brainstorming, and root cause analysis. Once the problem is clearly defined, goals are established, and an action plan is developed. This plan includes detailed steps, timelines, resources required, and criteria for measuring success. Following the planning stage is the Do phase, where the action plan is implemented (Jokovic et al., 2023). This is the stage where the proposed changes or improvements are put into practice on a small scale or in a controlled environment. The focus here is on executing the plan while closely monitoring the process to gather data on its effectiveness. It is essential to document any deviations from the plan and the outcomes of the implementation. This phase is often experimental, allowing for learning and adjustments before a full-scale implementation.

Once the changes have been implemented, the process moves to the Check phase. In this stage, the outcomes of the implementation are assessed against the expected results. The data collected during the Do phase is analyzed to determine whether the changes have led to the desired improvements. If the results are positive and the objectives have been met, this phase also serves as a validation of the changes made. However, if the results are not satisfactory, this phase helps in identifying what went wrong, providing insights for further adjustments.

Finally, the Act phase is where decisions are made based on the outcomes of the Check phase. If the changes have been successful, the process or solution is standardized and fully implemented across the organization. This phase also includes the documentation of best practices and lessons learned, ensuring that the organization can replicate success in future projects. If the desired results were not achieved, the cycle begins again, starting with a revised plan based on the insights gained. This cyclical nature of the PDCA approach ensures continuous improvement, as each cycle builds on the lessons of the previous one (Yanamandra et al., 2023).

The PDCA Cycle is a dynamic and flexible tool that promotes a culture of continuous improvement. By emphasizing planning, careful execution, rigorous evaluation, and thoughtful action, it enables organizations to refine their processes, reduce waste, improve quality, and enhance overall efficiency (Almeida, Abreu, 2023; Jokovic et al., 2023; Khourshed, Gouhar, 2023; Maganga, Taifa, 2023; Liu et al., 2023; Yanamandra et al., 2023; Escobar et al., 2023; Bousdekis et al., 2023; Antony et al., 2023). The iterative nature of the cycle ensures that improvement is ongoing, with each iteration bringing the organization closer to its goals of optimal performance and quality excellence (Singh et al., 2023).

Table 1 contains description of PDCA Cycle key principles.

Key principle	Description			
Continuous	The PDCA Cycle embodies the principle of continuous improvement, encouraging			
Improvement	organizations to persistently seek ways to enhance their processes, products, or services.			
	Each cycle allows for incremental refinements, fostering a culture where progress is ongoing			
	rather than finite. This principle ensures that no process remains stagnant, as the cycle is			
	designed to loop indefinitely, with each iteration building upon the lessons learned from the			
	previous one. The ultimate goal is to achieve sustained excellence by continuously			
	identifying and eliminating inefficiencies.			
Systematic	The PDCA Cycle provides a methodical framework for addressing problems and			
Approach	implementing improvements. It begins with a thorough analysis during the planning phase,			
	where the problem or opportunity is clearly defined, followed by structured execution in the			
	Do phase. The Check phase involves rigorous evaluation of results, ensuring that the			
	implementation aligns with the expected outcomes. The final Act phase focuses on			
	standardizing successful changes or revisiting the plan if goals were not met.			
	This systematic approach ensures that improvements are not haphazard but are carefully			
	planned and executed.			
Data-Driven	Central to the PDCA Cycle is the reliance on data and empirical evidence to guide decisions			
Decision	at every stage. During the planning phase, data is used to identify the root causes of issues,			
Making	while in the Do phase, data is collected to monitor the effectiveness of changes.			
	In the Check phase, this data is analyzed to assess the impact of the implemented actions.			
	By basing decisions on solid evidence rather than assumptions, organizations can ensure that			
	their actions lead to tangible improvements. This principle helps in minimizing risks and			
	increasing the likelihood of success in the improvement process.			

Table 1.Key principles of PDCA Cycle

Feedback and	The PDCA Cycle emphasizes the importance of feedback and continuous learning.			
Learning	After implementing changes, the Check phase serves as a crucial feedback loop, where the			
	outcomes are measured and analyzed. This feedback is essential for determining the success			
	of the actions taken and identifying any areas that need further improvement. The learning			
	derived from each cycle is then used to inform future planning and implementation.			
	This principle ensures that organizations do not repeat mistakes and can continually refine			
	their processes based on real-world results, leading to more effective and efficient			
	operations over time.			
Flexibility and	The PDCA Cycle is designed to be highly adaptable to different types of processes,			
Adaptability	industries, and organizational structures. Its flexible nature allows it to be applied to a wide			
	range of problems, from simple process improvements to complex, organization-wide			
	initiatives. The cycle's iterative nature also means that it can be easily adjusted based on the			
	outcomes of each phase. If a solution does not work as expected, the organization can			
	This adaptability makes the PDCA Cycle a powerful tool for continuous improvement in			
	diverse environments.			
Employee	A key principle of the PDCA Cycle is the active involvement of employees at all levels of			
Involvement	the organization. Successful implementation of the cycle requires input and collaboration			
	from those who are directly involved in the processes being improved. Employee			
	involvement ensures that a diverse range of perspectives is considered, leading to more			
	innovative solutions and a greater sense of ownership over the improvements. Additionally,			
	involving employees in the PDCA process fosters a culture of quality and continuous			
	improvement, as they become more engaged in the pursuit of organizational excellence and			
	more committed to the success of implemented changes.			
	 quickly return to the planning stage, revise the approach, and begin the cycle anew. This adaptability makes the PDCA Cycle a powerful tool for continuous improvement in diverse environments. A key principle of the PDCA Cycle is the active involvement of employees at all levels of the organization. Successful implementation of the cycle requires input and collaboration from those who are directly involved in the processes being improved. Employee involvement ensures that a diverse range of perspectives is considered, leading to more innovative solutions and a greater sense of ownership over the improvements. Additionally, involving employees in the PDCA process fosters a culture of quality and continuous improvement, as they become more engaged in the pursuit of organizational excellence and 			

Cont. table 1.

3. How PDCA Cycle method can be integrated with Industry 4.0 and Quality 4.0 concept

The integration of the PDCA Cycle with Industry 4.0 and the Quality 4.0 concept creates a powerful framework for achieving continuous improvement and maintaining high standards of quality in modern industrial environments. This integration leverages the technological advancements of Industry 4.0—such as IoT, big data analytics, AI, and automation—while aligning with the principles of Quality 4.0, which focuses on using these technologies to enhance quality management practices (Alrabadi et al., 2023).

Incorporating the PDCA Cycle within this context begins with the Plan phase, where Industry 4.0 technologies play a crucial role in data collection and analysis. IoT devices and sensors embedded in machines and processes generate real-time data, providing a comprehensive view of the operational landscape (Bousdekis et al., 2023). This data can be analyzed using AI and advanced analytics to identify patterns, predict potential issues, and uncover opportunities for improvement. Quality 4.0 emphasizes the use of this data to inform decision-making, ensuring that the planning process is grounded in accurate and timely information. By integrating these insights, organizations can develop more effective action plans that are tailored to the specific needs of their operations, leading to more targeted and impactful improvements.

In the Do phase, Industry 4.0 technologies enable the efficient implementation of the planned changes. Automation, robotics, and AI-driven systems ensure that tasks are executed with precision and consistency, reducing the risk of human error and enhancing overall process reliability. The interconnected nature of Industry 4.0 systems facilitates seamless communication and coordination across different departments and stages of production, ensuring that the entire organization works cohesively towards the implementation goals. Quality 4.0 further enhances this phase by incorporating advanced quality control mechanisms, such as real-time monitoring and AI-based defect detection, ensuring that quality is maintained throughout the execution process (Maganga, Taifa, 2023).

The Check phase benefits significantly from the real-time data and advanced analytics capabilities provided by Industry 4.0. Continuous monitoring and data collection allow organizations to evaluate the outcomes of their actions promptly and accurately. AI and machine learning algorithms can analyze this data to provide deeper insights into the effectiveness of the implemented changes, identifying any discrepancies or areas that require further attention. Quality 4.0 aligns with this by emphasizing a data-driven approach to quality assurance, where real-time analytics and predictive models are used to assess quality performance and detect issues before they escalate. This phase ensures that feedback is immediate and that learning is integrated into the cycle quickly, allowing for rapid adjustments and refinements (Antony et al., 2023; Escobar et al., 2023; Salimbeni, Redchuk, 2023).

In the Act phase, the insights gained from the previous stages are used to standardize successful practices or initiate further cycles of improvement. Industry 4.0 technologies provide the flexibility and adaptability needed to make these changes swiftly and effectively. For instance, digital twin technology allows for the simulation of process adjustments before they are implemented in the physical world, reducing risks and ensuring optimal outcomes. Quality 4.0 supports this phase by emphasizing the continuous evolution of quality standards and practices, encouraging organizations to leverage technological advancements to sustain high levels of quality and operational excellence.

By integrating the PDCA Cycle with Industry 4.0 and Quality 4.0, organizations can create a synergistic approach that enhances both operational efficiency and quality management. This integration ensures that continuous improvement is driven by real-time data, advanced analytics, and automation, leading to more informed decision-making, faster implementation of changes, and more effective quality assurance processes. As a result, organizations can achieve greater agility, resilience, and competitiveness in the face of rapidly changing market conditions and technological advancements.

Table 2 is listing examples of integration of PDCA Cycle with Industry 4.0.

Table 2.PDCA Cycle integration with industry 4.0

Aspect	Description	
Data Collection	Industry 4.0 technologies, such as IoT sensors and big data analytics, enable continuous,	
and Analysis	real-time data collection from all aspects of the production process. This data is cruc	
	the Plan phase, as it allows for precise problem identification and predictive insights.	
Implementation	The Do phase benefits from Industry 4.0 through automation, robotics, and AI, which	
Efficiency	enable the precise and consistent execution of planned actions. These technologies redu	
	human error, increase speed, and ensure uniform implementation across the organization.	
Real-Time	During the Check phase, Industry 4.0 facilitates real-time monitoring of outcomes through	
Monitoring and	advanced analytics and AI. Continuous feedback loops allow for immediate assessment of	
Feedback	changes, ensuring that any deviations from expected results are quickly identified and	
	corrected.	
Predictive	Industry 4.0 supports the Plan and Do phases by integrating predictive maintenance	
Maintenance	strategies. IoT sensors monitor equipment health, predicting failures before they occur,	
	which informs better planning and reduces downtime during implementation.	
Digital Twin	In the Act phase, digital twin technology allows organizations to simulate and test changes	
Technology	in a virtual environment before full-scale implementation. This aspect reduces risks	
	ensures that only the most effective solutions are rolled out.	
Flexibility and	Industry 4.0 enhances the overall agility of the PDCA Cycle. Rapid data analysis and	
Agility	automation allow organizations to quickly adapt to new information and changing	
	conditions, ensuring that the cycle can be repeated with greater speed and responsiveness.	
Advanced Quality	The Do and Check phases are strengthened by Industry 4.0's advanced quality control	
Control	mechanisms, such as AI-based defect detection and real-time quality monitoring, ensuring	
	that quality is maintained consistently throughout the process.	
Scalability of	Industry 4.0 enables scalable improvements by connecting various systems across the	
Improvements	organization. Successful changes can be rapidly deployed across multiple locations or	
	processes, ensuring consistent application of best practices as identified in the Act phase.	
Enhanced	The interconnected nature of Industry 4.0 promotes better collaboration across	
Collaboration	departments during all phases of the PDCA Cycle. Shared data platforms and	
	communication tools ensure that all stakeholders are aligned and can contribute effectively	
	to the improvement process.	
Resource	In the Plan and Do phases, Industry 4.0's data-driven insights enable more efficient use of	
Optimization	resources by optimizing production schedules, material usage, and energy consumption,	
	which leads to cost savings and sustainability improvements.	
Continuous	The iterative nature of the PDCA Cycle, combined with Industry 4.0 technologies,	
Learning and	supports continuous learning. AI and machine learning algorithms analyze past cycles to	
Adaptation	provide insights that refine future cycles, driving continuous adaptation and improvement.	

Table 3 is describe the advantages PDCA cycle approach usage in industry 4.0.

Table 3.

The advantages of PDCA Cycle integration with industry 4.0

Advantage	Description	
Enhanced	Industry 4.0 provides real-time data and advanced analytics, enabling more informed and	
Decision-Making	precise decision-making throughout the PDCA Cycle. This leads to better planning and	
	execution of improvements.	
Increased	Automation and AI-driven processes reduce the time and effort required to implement	
Efficiency	changes, making the PDCA Cycle faster and more efficient, with fewer manual	
	interventions and reduced risk of errors.	
Real-Time	Continuous monitoring and real-time data analysis allow for immediate feedback during	
Feedback	the Check phase, enabling rapid identification and correction of deviations from	
	expected outcomes.	
Predictive	Industry 4.0 technologies enable predictive maintenance and forecasting, allowing	
Capabilities	organizations to anticipate and prevent issues before they occur, enhancing the	
	effectiveness of the Plan phase.	

Cont. table 5.			
Improved Quality	Advanced quality control tools, such as AI-based defect detection, ensure consistent		
Control	quality throughout the process, reducing defects and enhancing overall product quality		
	during the Do and Check phases.		
Scalability	Successful improvements can be quickly scaled across the organization due to the		
	interconnected nature of Industry 4.0 systems, ensuring uniform application of best		
	practices identified in the Act phase.		
Greater	The integration with Industry 4.0 allows the PDCA Cycle to be more adaptable to		
Flexibility	changes, enabling organizations to quickly adjust plans and processes in response to new		
	data or market conditions.		
Cost Reduction	Optimized resource usage, reduced downtime, and more efficient processes contribute t		
	significant cost savings, making the overall improvement process more economical and		
	sustainable.		
Continuous	Machine learning and AI continuously analyze outcomes and past cycles, providing		
Learning	insights that enhance future iterations of the PDCA Cycle, fostering a culture of ongoing		
	improvement and innovation.		

Cont. table 3.

Table 4 is describe the problems of PDCA cycle approach usage in Industry 4.0 and methods to overcome them.

Table 4.

Problems	Description of Problem	Overcoming Strategies
High	Integrating Industry 4.0 technologies into	Start with a phased implementation
Implementation	the PDCA Cycle can require significant	approach, focusing on the most critical areas
Costs	financial investment in new hardware,	first. Seek government grants, incentives,
	software, and training, which may strain	or partnerships to offset initial costs.
	budgets.	
Complexity of	The vast amount of data generated by	Implement advanced data management
Data	Industry 4.0 systems can be	systems and employ data scientists or
Management	overwhelming, making it difficult to	analysts. Use AI and machine learning tools
	manage, analyze, and derive actionable	to automate data processing and extract
	insights efficiently.	relevant insights.
Resistance to	Employees may resist the adoption of new	Provide comprehensive training programs
Change	technologies and processes, particularly if	and involve employees in the integration
	they are not familiar with Industry 4.0	process. Communicate the long-term
	concepts or fear job displacement.	benefits and create a culture of continuous
		improvement.
Integration with	Existing legacy systems may not be	Gradually upgrade legacy systems or use
Legacy Systems	compatible with Industry 4.0 technologies,	middleware solutions to bridge the gap.
	leading to challenges in data integration	Develop a clear integration roadmap that
	and process synchronization.	prioritizes critical areas for immediate
		attention.
Cybersecurity	The increased connectivity and data	Invest in robust cybersecurity measures,
Risks	exchange in Industry 4.0 can expose	including encryption, firewalls, and regular
	organizations to higher cybersecurity	security audits. Provide continuous training
	threats, including data breaches and	on cybersecurity best practices for
	unauthorized access.	employees.
Skill Gaps in	Employees may lack the necessary skills to	Offer continuous education and training
Workforce	operate and manage Industry 4.0	programs tailored to Industry 4.0 skills.
	technologies, hindering the effective	Partner with educational institutions to
	integration of these technologies into the	develop specialized courses or certifications.
	PDCA Cycle.	

Over-reliance	Excessive dependence on technology can	Encourage a balanced approach that
on Technology	lead to neglecting human insights and	integrates human judgment with
	creativity, which are essential for	technological tools. Foster a culture of
	successful PDCA Cycle implementation.	innovation where technology supports,
		rather than replaces, human input.
Data Privacy	The collection and use of large amounts of	Implement strict data privacy policies and
Concerns	data can raise privacy concerns, especially	ensure compliance with relevant regulations
	if personal or sensitive information is	(e.g., GDPR). Regularly review and update
	involved.	privacy practices to protect sensitive data.
Short-Term	The initial integration of Industry 4.0	Plan for a gradual rollout with pilot projects
Disruption	technologies can cause temporary	to minimize disruptions. Communicate
	disruptions to existing processes, affecting	clearly with all stakeholders about expected
	productivity and operational flow.	changes and provide support during the
		transition.

Cont. table 4.

4. Conclusion

The integration of the PDCA Cycle with Industry 4.0 and the Quality 4.0 concept represents a significant advancement in continuous improvement practices, aligning traditional quality management principles with modern technological innovations. This synergy between the systematic approach of the PDCA Cycle and the real-time data capabilities, automation, and advanced analytics of Industry 4.0 enhances organizations' ability to achieve higher levels of efficiency, quality, and adaptability in a rapidly evolving industrial landscape.

The PDCA Cycle, with its iterative phases of Plan, Do, Check, and Act, provides a robust framework for identifying problems, implementing solutions, evaluating outcomes, and standardizing improvements. When augmented by Industry 4.0 technologies, this cycle becomes more dynamic and responsive, allowing for more precise planning based on comprehensive data analysis, more efficient execution through automation, real-time monitoring for immediate feedback, and rapid adaptation through advanced simulation tools like digital twins.

However, the integration of these advanced technologies is not without its challenges. High implementation costs, complexity in data management, resistance to change, and cybersecurity risks are significant barriers that organizations must address to fully capitalize on the benefits of Industry 4.0. Overcoming these challenges requires strategic planning, phased implementation, robust data management systems, comprehensive employee training, and a balanced approach that combines human insights with technological capabilities.

The fusion of the PDCA Cycle with Industry 4.0 and Quality 4.0 concepts creates a powerful engine for continuous improvement in the modern industrial environment. This integration not only enhances decision-making and efficiency but also supports a culture of continuous learning and adaptation, ensuring that organizations remain competitive and resilient in the face of ongoing technological advancements and market dynamics. The successful application of this

integrated approach will depend on careful management of the associated challenges, with a focus on maximizing the synergistic potential of traditional quality management practices and cutting-edge Industry 4.0 technologies.

References

- 1. Almeida, S., Abreu, L.P.M. (2024). The Quality Manager in the Industry 4.0 Era. *Lecture Notes in Mechanical Engineering*, 468-474.
- 2. Alrabadi, T.D.S., Talib, Z.M., Abdullah, N.A.B. (2023). The role of quality 4.0 in supporting digital transformation: Evidence from telecommunication industry. *International Journal of Data and Network Science*, *7*(2), 717-728.
- 3. Amat-Lefort, N., Barravecchia, F., Mastrogiacomo, L. (2023). Quality 4.0: big data analytics to explore service quality attributes and their relation to user sentiment in Airbnb reviews. *International Journal of Quality and Reliability Management*, 40(4), 990-1008.
- 4. Antony, J., McDermott, O., Sony, M., Cudney, E.A., Doulatabadi, M. (2023). Benefits, challenges, critical success factors and motivations of Quality 4.0–A qualitative global study. *Total Quality Management and Business Excellence*, *34*(7-8), 827-846.
- Antony, J., Sony, M., McDermott, O., Jayaraman, R., Flynn, D. (2023). An exploration of organizational readiness factors for Quality 4.0: an intercontinental study and future research directions. *International Journal of Quality and Reliability Management*, 40(2), 582-606.
- Antony, J., Swarnakar, V., Sony, M., McDermott, O., Jayaraman, R. (2023). How do organizational performances vary between early adopters and late adopters of Quality 4.0? An exploratory qualitative study. *TQM Journal*.
- 7. Barsalou, M. (2023). Root Cause Analysis in Quality 4.0: A Scoping Review of Current State and Perspectives. *TEM Journal*, *12*(*1*), 73-79.
- Bousdekis, A., Lepenioti, K., Apostolou, D., Mentzas, G. (2023). Data analytics in quality 4.0: literature review and future research directions. *International Journal of Computer Integrated Manufacturing*, 36(5), 678-701.
- 9. Escobar, C.A., Macias-Arregoyta, D., Morales-Menendez, R. (2023). The decay of Six Sigma and the rise of Quality 4.0 in manufacturing innovation. *Quality Engineering*.
- Gimerská, V., Šoltés, M., Mirdala, R. (2023). mproving Operational Efficiency through Quality 4.0 Tool: Blockchain Implementation and Subsequent Market Reaction., *Quality Innovation Prosperity*, 27(2), 16-32.
- Jokovic, Z., Jankovic, G., Jankovic, S., Supurovic, A., Majstorović, V. (2023). Quality 4.0 in Digital Manufacturing – Example of Good Practice. *Quality Innovation Prosperity*, 27(2), 177-207.

- 12. Khourshed, N., Gouhar, N. (2023). Developing a Systematic and Practical Road Map for Implementing Quality 4.0. *Quality Innovation Prosperity*, 27(2), 96-121.
- Liu, H.-C., Liu, R., Gu, X., Yang, M. (2023). From total quality management to Quality 4.0: A systematic literature review and future research agenda. *Frontiers of Engineering Management*, 10(2), 191-205.
- 14. Maganga, D.P., Taifa, I.W.R. (2023). Quality 4.0 conceptualisation: an emerging quality management concept for manufacturing industries. *TQM Journal*, *35*(2), 389-413.
- 15. Olsen, C. (2023). Toward a Digital Sustainability Reporting Framework in Organizations in the Industry 5.0 Era: An Accounting Perspective. *Lecture Notes in Networks and Systems*, *557*, 463-473.
- Rosak-Szyrocka, J., Żywiołek J., Wolniak, R. (2023). Main reasons for religious tourism from a quantitative analysis to a model. *International Journal for Quality Research*, 1(17), 109-120.
- Saihi, A., Awad, M., Ben-Daya, M. (2023). Quality 4.0: leveraging Industry 4.0 technologies to improve quality management practices a systematic review. *International Journal of Quality and Reliability Management*, 40(2), 628-650.
- 18. Salimbeni, S., Redchuk, A. (2023). Quality 4.0 and Smart Product Development. *Lecture Notes in Networks and Systems, 614 LNNS,* 581-592.
- Singh, J., Ahuja, I.S., Singh, H., Singh, A. (2023). Application of Quality 4.0 (Q4.0) and Industrial Internet of Things (IIoT) in Agricultural Manufacturing Industry. *AgriEngineering*, 5(1), 537-565.
- Stecuła, K., Wolniak, R. (2022). Advantages and Disadvantages of E-Learning Innovations during COVID-19 Pandemic in Higher Education in Poland. *Journal of Open Innovation: Technology, Market, and Complexity*, 8(3), 159.
- Stecuła, K., Wolniak, R. (2022). Influence of COVID-19 Pandemic on Dissemination of Innovative E-Learning Tools in Higher Education in Poland. *Journal of Open Innovations: Technology, Market and Complexity, 8(1), 89.*
- 22. Sureshchandar, G.S. (2023). Quality 4.0 a measurement model using the confirmatory factor analysis (CFA) approach. *International Journal of Quality and Reliability Management*, 40(1), 280-303.
- 23. Wang, Y., Mo, D.Y., Ma, H.L. (2023). Perception of time in the online product customization process. *Industrial Management and Data Systems*, *123*(2), pp. 369-385.
- 24. Yanamandra, R., Abidi, N., Srivastava, R., Kukunuru, S., Alzoubi, H.M. (2023). *Approaching Quality 4.0: The Digital Process Management as a Competitive Advantage*. 2nd International Conference on Business Analytics for Technology and Security, ICBATS 2023.