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Purpose: The purpose of this paper is to address the challenges of missing data and anomalies 27 

in the Automatic Identification System (AIS) database and to explore methods for data 28 

imputation and anomaly detection to optimize maritime traffic monitoring. 29 

Design/methodology/approach: This research applies machine learning and data imputation 30 

techniques to AIS datasets to fill gaps and detect anomalies, aiming to enhance operational 31 

efficiency in maritime transportation. 32 

Findings: The study finds that filling missing data improves vessel traffic monitoring systems, 33 

supports better asset management, and contributes to fuel consumption optimization in 34 

maritime operations. 35 

Research limitations: Limitations include the reliance on available AIS data quality,  36 

with future research needed to integrate real-time environmental conditions and scale the 37 

methods to large datasets. 38 

Practical implications: The findings offer practical solutions for improving maritime 39 

operations, leading to cost savings through optimized vessel management and reduced 40 

environmental impact. 41 
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Social implications: The research supports environmental sustainability by reducing emissions 1 

in maritime transport, influencing corporate responsibility and regulatory policies. 2 

Originality/value: his paper offers innovative methods for AIS data imputation and anomaly 3 

detection, providing value to the maritime industry by improving decision-making and 4 

operational efficiency. 5 

Keywords: data analysis, Automatic Identification System, maritime traffic monitoring, vessel 6 

traffic monitoring systems, fuel consumption optimization. 7 

Category of the paper: Research paper. 8 

Introduction 9 

Filling in data gaps alongside anomaly detection has become one of the key challenges in 10 

the field of data analysis and machine learning (Little, Rubin, 2019; Karczmarek et al., 2020a, 11 

2020b, 2021a; Kiersztyn et al., 2020a, 2020b; Łopucki et al., 2022). Many collected datasets 12 

contain missing values, which can result from various factors such as measurement errors, 13 

technical issues, or simply lack of information. These gaps can negatively impact the quality of 14 

analysis and modeling, leading to incomplete and inappropriate results. Data gap filling plays 15 

a crucial role in the process of data analysis and interpretation (Yu, Kim, 2019). There are 16 

numerous tech- niques and methodologies that can be applied to address this problem, 17 

depending on the type of data, available information, and analysis objectives (Kim, 2020; Yoon, 18 

Jordon, van der Schaar, 2018; Mishra, Singh, 2021; Zhang, Guo, Liu, 2019). Filling in missing 19 

data in the AIS (Automatic Identification System) database presents a significant challenge in 20 

the field of maritime traffic monitoring and management (Abbasi, Ghanbari, Manikas, 2019; 21 

Du et al., 2021; Wang et al., 2021; Han et al., 2020). The Automatic Identification System is 22 

widely used for collecting ship information in seas and oceans. AIS data is invaluable for 23 

various sectors such as navigation safety, route planning, port management, and marine 24 

environment. However, due to various factors like equipment failures, signal interference, 25 

deliberate transponder shutdowns, and other technical obstacles, the AIS database often 26 

contains gaps and missing information (Li et al., 2019, 2020; Chen et al., 2020; Xu et al., 2019; 27 

Yang et al., 2020; Wang et al., 2019; Liu, Lu, Zhan, 2021; Jin et al., 2020; Tang, Zhu, Ma, 28 

2019). Filling in missing data in the AIS database is essential to ensure completeness and 29 

consistency of maritime traffic information. Missing data can lead to the loss of valuable vessel 30 

location, speed, course, and other parameters, which have serious implications for monitoring 31 

and management operations. In recent years, numerous research studies and scientific works 32 

have focused on developing effective methods and techniques for filling in missing data in the 33 

AIS database. This article provides an overview of various approaches and technologies applied 34 

in this area. 35 
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Economic justification of the significance of the problem  1 

Vessel traffic monitoring systems provide support for a wide range of applications, 2 

including asset management, safety, and pollution compliance. Access to vessel position 3 

information, including GPS data, atmospheric information, and safety regulations, can help to 4 

avoid accidents but also to optimize vessel operating costs. The use of vessel traffic monitoring 5 

systems can bring tangible benefits to owners and operators, as they enable rapid response to 6 

changes in the environment, monitoring of technical condition, as well as faster and more 7 

efficient fleet management. Through their use, it is possible to reduce operating costs and 8 

increase safety. The economic benefits associated with choosing the optimal route include 9 

reduced damage to steering and hull propulsion systems, cargo and onboard systems, lower fuel 10 

consumption, or more timely arrival at the port of destination (Jurdziński, 2010). 11 

In the area of ship operational optimization, the reduction of operating costs is most often 12 

indicated as the main objective. A basic solution that has been used for decades is slow 13 

steaming, i.e., ship operation based on reducing speed and thus progressively reducing fuel 14 

consumption (and thus fuel costs). This is the use of a function of fuel consumption and ship 15 

speed, which is similar to a logarithmic function in its course, and thus in the upper speed ranges 16 

allows a significant reduction in fuel consumption at the expense of a relatively small reduction 17 

in speed (Cariou, 2011). 18 

From an economic point of view, lower fuel consumption generates lower voyage costs for 19 

the ship, but also results in lower greenhouse gas (GHG) emissions into the atmosphere.  20 

An important aspect that cannot be overlooked is the reduction of bunker fuel consumption 21 

costs, as bunker fuel consumption costs typically account for 50% (Notteboom, 2006) or even 22 

more than 60% (Golias et al., 2009) of a container ship’s total operating costs. These include 23 

various types of navigation systems that optimize the sea voyage taking into account 24 

navigational and market conditions (e.g., fuel management, voyage weather planning, crew 25 

eco-driving training). The process of weather optimization of a sea route involves taking into 26 

account all historical data and forecasts for a given sea body of the future sea voyage, in order 27 

to best align the route with the main objective of minimizing energy (fuel) consumption, 28 

including, in particular, consideration of wind strength and direction and wave action.  29 

The influence of sailing speed on bunker fuel consumption in the area of shipping analysis has 30 

been written about (Golias et al., 2009; Christiansen et al., 2013; Meng et al., 2014a) including 31 

considering fleet deployment (Brouer et al., 2014), or in relation to speed and displacement 32 

(Álvarez, 2009). 33 

In practice, this refers to the avoidance of storms, strong winds, and high waves, which 34 

increase the vessel’s resistance to motion and result in either a reduction in speed at the same 35 

engine rpm or the need to increase engine rpm to maintain a constant cruising speed. Methods 36 

for selecting the optimum speed were described (Mulder, Dekker, 2014). Tests carried out over 37 
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a full year on a specific vessel showed that by using a suitable weather optimization system it 1 

was possible to reduce fuel consumption by 4% over the year, with the potential to increase this 2 

reduction to 8%. An extension of this technology is to also take into account sea currents,  3 

which are quite well known and described by oceanographers. In extreme cases, this can help 4 

to increase speed by 3 kn while maintaining the same number of thruster revolutions, relative 5 

to traveling under the same conditions but without the assistance of a sea current in the direction 6 

of the voyage. 7 

In contrast (Qi, Song, 2012), investigated the expected reduction in fuel consumption along 8 

a linear route when optimizing the voyage schedule of ships with uncertainty in port stays. 9 

(Wang, Meng, 2012) studied the problem of optimizing the sailing speed of a container ship 10 

considering container routing and handling.  11 

The amount of fuel consumption on a ship is a function of its speed and the power required 12 

to achieve it. For each type of ship’s power plant, fuel or ship size and type, this function will 13 

have different values and course. However, a common feature is that as speed increases,  14 

fuel consumption increases disproportionately faster. In other words, a unit increase in speed 15 

requires more units of fuel. While a reduction in speed has, as indicated, a non-linear effect on 16 

power demand and fuel consumption, from the point of view of shipping economics, a reduction 17 

in vessel speed has a linear correlation with capacity, where a vessel’s efficiency decreases in 18 

proportion to the decrease in its operating speed. The implications of this are therefore clear 19 

and indicate that the more we reduce the speed of ships (to reduce CO2 emissions), the less 20 

capacity they will present a global annual basis.  21 

The potential for reducing fuel consumption by managing the ship’s trim is determined to 22 

be in the range of 1-4% (ABS Ship Energy Efficiency Measures Advisory, 2013). In a study 23 

carried out under real conditions on a container ship, fuel consumption was measured 24 

alternately at trim to stern – 60 cm and trim to bow – 60 cm. It turned out that despite the 25 

increase in displacement (by 255 tons – ballast water), the demand of this ship decreased by 26 

2.6%, so that fuel consumption dropped from 63 to 61.5 tons per day. Under optimum 27 

conditions for this vessel, the maximum reduction in power required could be 2.8 per cent, 28 

translating into a reduction in fuel consumption of 3.77 tons of HFO per day. Considering that 29 

this vessel can make an average of 4.28 voyages per year carrying 37,200 TEUs, being at sea 30 

for an average of 282 days, the fuel saving potential could be 1,063.5 tons of fuel. Under non-31 

SECA conditions for HFO fuel, this equates to fuel cost savings of USD 382,866 per year, 32 

translating into savings of approximately USD 10.30/TEU slot per voyage. For SECA 33 

conditions and the use of MGO fuel, the savings are much higher at USD 67,650 per year,  34 

or approximately USD 15.50/TEU slot (Czermański, 2019). 35 

Vessel traffic monitoring systems can significantly improve the efficiency and productivity 36 

of the maritime industry. Firstly, they allow real-time data to be transmitted from remote 37 

locations, allowing resources and operations at sea to be monitored and managed from 38 

anywhere in the world. Secondly, they also offer enhanced communications security, ensuring 39 
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that asset and operations data are protected from unauthorized access. Thirdly, the technology 1 

can help companies in the maritime industry optimize their operations to achieve greater 2 

efficiency and reduce operational costs, including fuel consumption. Vessel position data 3 

allows better planning of routes through specific areas. All this makes the maritime industry 4 

more efficient and productive. 5 

Database Description 6 

The analyzed database was purchased on a commercial basis from the S\&P Global data 7 

provider, within the IHS Markit. In the whole shape, the database consists of more than  8 

225 indicators describing a ship, where data is (or should be at least) sourced from the vessel 9 

registration authority. For the purpose of the study, there were selected 4 constant 10 

characteristics of a ship: LRIMOShipNo, MMSI, ShipName, and CallSign. 11 

LR/IMO Ship Number is a unique digit number assigned to a ship, remaining unchanged 12 

during the whole life of the ship, even in the case of rebuilding or Ship type conversion.  13 

This IMO number is assigned to the total or greater portion of the ship's hull, including the 14 

machinery space. The IMO identification number was adopted on 19th November 1987 in IMO 15 

Resolution A.600(15). The LR/IMO Number is never reassigned to another vessel. This number 16 

is also utilized in respect of SOLAS XI 1/3 and 1/5. The consequence of that is that we can 17 

assume the uniqueness of a ship hidden behind the IMO Number whenever registered/observed. 18 

MMSI Number (Mobile Maritime Station Identifier) is a 9-digit number assigned to a ship 19 

towards identifying her via VHF radio communications. The first 3 digits denote the country of 20 

registry; therefore, by reflagging a ship, also the MMSI number is subject to be changed and 21 

updated. The consequence of that is, it cannot be assumed the unchangeability of the number 22 

in the database. 23 

ShipName is another changeable and variable characteristic of a ship. It should be named 24 

in English format and in accordance with the registration authority up to date. The name of  25 

a ship can be changed independently from any other events, for any reason at any time.  26 

This also has a serious impact on the data reliability, and it cannot be included as fixed data. 27 

CallSign is an alphanumeric identifier of a ship via radio communications and, similarly to 28 

the MMSI, is related to the flag of registration. Each flag authority possesses of a call sign range 29 

from that is selected a unique number to a ship. Therefore, as well as the MMSI, it should be 30 

noted that CallSign is variable by the reflagging of a ship. 31 

  32 
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Description of missing data 1 

The database contains a range of columns enabling the identification of the ship for which 2 

a particular entry is made in the database. The following fields are available in the database: 3 

LRIMOShipNo, MMSI, ShipName, and CallSign. In theory, we are dealing with a significant 4 

data redundancy. However, upon careful analysis of the data for the Baltic Sea basin, interesting 5 

observations can be made. It turns out that many records have missing data, with corresponding 6 

values indicating the presence of data gaps in the respective fields.  7 

Furthermore, for the MMSI number, there are values that do not meet the conditions 8 

imposed on the MMSI number. The analysis was conducted on entries registered from 2011 to 9 

2022. The first entry was recorded on December 31, 2011, at 23:00:20, while the last one was 10 

on June 30, 2022, at 22:59:02. The data for the year 2011 only contains information about 11 

individual entries for the last hour of that year. Therefore, to increase the clarity of the analysis, 12 

these values were added to the data for the year 2012. In total, 348,591,048 records were 13 

analyzed for the Baltic Sea. The Figure 1 illustrates the number of entries for each year. 14 

 15 

Figure 1. The number of records in the database for each year. 16 

Table 1 presents the number of data gaps and incorrect values for each ship identification 17 

field. 18 

Table 1.  19 
Number of data gaps and incorrect values for ship identification fields 20 

ID Number of missing values 

LRIMOShipNo 189607816 

MMSI 537856 

ShipName 2298526 

CallSign 9945659 

 21 

The largest number of data gaps is found in the LRIMOShipNo field. It turns out that for 22 

189,607,816 records in this field, a value indicating a data gap was entered. Thus, the number 23 

of data gaps accounts for over 54% of all recorded entries. The distribution of data gaps across 24 

different years is also interesting. 25 
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 1 

Figure 2. Percentage of data gaps for the LRIMOShipNo field. 2 

Analyzing the results presented in Figure 2, we observe a consistent upward trend. The data 3 

for 2022 is incomplete, which may slightly distort the overall trend. In the case of other fields 4 

identifying individual records, a similar relationship is not observed (see Figure 3). 5 

 6 

Figure 3. Percentage of data gaps for the SHIPNAME field. 7 

At this point, a natural question arises: Is the distribution of data gaps in the LRIMO number 8 

influenced by certain factors? It seems reasonable to examine whether different months,  9 

days of the week, and hours exhibit the same level of data gaps or if there are higher percentages 10 

during certain time periods. 11 



162 A. Kiersztyn, D. Czerwiński, E. Czermański et al. 

 1 

Figure 4. Percentage of data gaps in different months of 2021. 2 

Analyzing the results presented in Figure 4, we can observe that the percentage of data gaps 3 

for the LRIMO identifier varies across different months. The highest percentage of data gaps 4 

occurs in the summer period, while the lowest is in the winter period. Furthermore,  5 

this difference is statistically significant, as confirmed by the conducted Fischer-Snedecor test. 6 

It is worthwhile to explain this fact and determine the reasons for the variation in data integrity 7 

across different months. When examining the data integrity level in terms of the influence of 8 

individual days of the week, the values obtained are presented in Figure 5. 9 

Table 2. 10 
Percentage of missing data for each type of vessel 11 

ShipType Number of occurrences Number of gaps Percentage of missing values 

Anti Pollution 174092 88455 50.8093 

Cargo 7246549 589947 8.1411 

High Speed Craft 342685 160307 46.7797 

Law Enforcement 470292 303333 64.4989 

Medical Transport 16800 16798 99.9881 

N/A 3697381 2074072 56.0957 

Passenger 5021903 2887092 57.49 

Pilot Boat 1441544 1260684 87.4537 

Search And Rescue 1730106 1648592 95.2885 

Tanker 2757768 286283 10.381 

Tender 260860 251497 96.4107 

Tug 2906347 900576 30.9865 

Vessel 21634083 19461979 89.9598 

Wing In Ground-effect 31368 27791 88.5967 
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 1 

Figure 5. Percentage of data gaps on different days of the week. 2 

In the case of the percentage of data gaps on different days of the week, we also observe  3 

a statistically significant difference. Interestingly, the highest number of data gaps is recorded 4 

on weekends, while the most consistent data comes from Mondays. 5 

 6 

Figure 6. Percentage of data gaps broken down by hours. 7 

Similarly to the previous analysis of the percentage of data gaps in the LRIMO column, 8 

broken down by hours (see Figure 6), statistically significant differences are observed. 9 

Additionally, it is worth noting that this distribution resembles a normal distribution, similar to 10 

the analysis based on the month of occurrence. In conclusion, it can be stated that the time of 11 

event registration statistically influences data integrity. Both the month, day of the week,  12 

and the hour of occurrence impact data quality. At this point, another natural question arises: 13 

Are there statistically significant differences for different types of ships and different ship 14 

operational statuses? 15 

  16 
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Table 3.  1 
Percentage of gaps for each status 2 

MovingStatus 
Number of 

occurrences 
Number of gaps 

Percentage of missing 

values 

Anchored 9768 3365 34.4492 

Aground 1297701 162617 12.5312 

Constrained by draught 63120 10122 16.0361 

Engaged in fishing 1695834 1369200 80.739 

Moored 9968212 3020910 30.3054 

N/A 20609874 20139984 97.7201 

Not under command 102833 55421 53.8942 

Restricted manoeuverability 593835 214845 36.1792 

Under way sailing 280263 151511 54.0603 

Under way using engine 13110338 4829431 36.8368 

 3 

Table 3 illustrates the impact of ship status on data quality. As expected, the highest 4 

percentage of missing data occurs in cases where the ship status is not provided. A significant 5 

percentage is also observed when the status is listed as "Engaged in fishing". Another interesting 6 

aspect is to examine how the position of the ship affects data integrity. To facilitate analysis,  7 

a random sample of 100,000 observations was taken from the data from the year 2021.  8 

The number of data gaps identifying each record was counted. In the selected sample,  9 

there were no cases where all fields were incomplete. It turns out that ships located far from the 10 

shore generally have complete data, while numerous data gaps occur for ships near the coast or 11 

inland (see Figure 7). 12 

 13 

Figure 7. Percentage of data gaps broken down by hours. 14 

The number of unique values for each identifier is different. This is evident from the values 15 

obtained for the most abundant year, 2021 (see Table 4). 16 
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Table 4.  1 
Number of unique values for each identifier in 2021 2 

ID LRIMO MMSI ShipName Call Sign 

Number of different values 10598 81101 39299 41161 

Impact of anomalies on filling data gaps 3 

It might seem that in cases where missing data only occurs for certain ship identifying 4 

variables, it would be easy to fill in the missing entries based on available information. 5 

However, nothing could be further from the truth. It turns out that the lack of data integrity is 6 

not limited to the occurrence of missing data but also extends to inconsistencies in the 7 

designations. For example, we will limit ourselves to one selected ship whose MMSI number 8 

is 211002010. In the analyzed database, all LRIMO field values for this ship are -1000, which 9 

of course means no data. Therefore, it is not possible to complete the LRIMO values without 10 

collecting information from additional sources. In addition, it is worth noting that there is also 11 

a lack of consistency in the ShipName and CallSign fields. The distributions of individual 12 

variables are presented in tables 5 and 6. 13 

Table 5.  14 
Distribution of the ShipName variable for the analyzed vessel 15 

ShipName  Count 

-1000  1082  

DELIVERANCE  3 

IRMA  98 

IRMA  1197 

SII  4 

SIRENITA  311 

WINJA  1 

Table 6.  16 
Distribution of the CallSign variable for the analyzed vessel. 17 

CallSign 1000 DGTF WDJ3977 XXXXX 

count 936  1677 1  82  

 18 

The results presented in Tables 6 and 7 confirm major problems and lack of consistency in 19 

determining such key values as variables identifying the ship. This fact confirms the belief that 20 

other data contained in the database should also be approached with a great deal of uncertainty. 21 

Table 7 presents a description of anomalies for selected variables. 22 

  23 
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Table 7. 1 

Selected types of anomalies for individual variables 2 

Variable name  Anomaly description 

Beam =0 

Length =0 

Speed >90 

Draught =0 

Heading >360 

Time diff >3600 

Time diff 2 <0 

 3 

Values equal to zero were considered anomalies for the Beam, Length and Draft variables. 4 

In the case of the Speed variable, values greater than 90 knots were considered outliers, 5 

although it is safe to assume a much higher value. For the Heading variable, values outside the 6 

range of this variable were considered anomalies. Variables Time diff is the difference between 7 

the reporting time (MovementDateTime variable) and the time of saving to the database 8 

(ProcessedData). A delay of more than an hour was deemed to be an anomaly. In the case of 9 

the Time diff 2 variable, we are dealing with the difference between the reporting time and the 10 

expected time of arrival (ETA). If this difference is negative, i.e. the ship is late, we are dealing 11 

with an anomaly. 12 

Analyzing the results presented in Table 8, it can be seen that in some cases the number of 13 

anomalies is significant and may affect the integrity of the data, and thus further analyses.  14 

In the case of Draft, nearly half of the records contain data that is suspected to be anomalous. 15 

In addition, it is worth noting that even in the case of a variable describing the destination port, 16 

we can encounter inconsistency. It is not uncommon for different notations for the destination 17 

port to be used, which can lead to errors. 18 

Table 8.  19 
The number of anomalies for individual variables and combinations of two variables 20 

Variable Name Number of Anomalies Percentage of Anomalies 

Beam 2,168,148 4.54% 

Length 2,102,851 4.41% 

Speed 8,798 0.02% 

Draught 22,03,298 46.17% 

Heading 38,950 0.08% 

Time Diff 633 0.00% 

Time Diff 2 11,173,346 23.41% 

Beam & Length 2,065,820 4.33% 

Beam & Speed 7,053 0.01% 

Beam & Draught 1,630,572 3.42% 

Beam & Heading 5,201 0.01% 

Beam & Time Diff 88 0.00% 

Beam & Time Diff 2 216,140 0.45% 

Length & Speed 7,053 0.01% 

Length & Draught 1,573,059 3.30% 

Length & Heading 5,215 0.01% 

Length & Time Diff 86 0.00% 

Length & Time Diff 2 208,690 0.44% 
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Cont. table 8. 1 
Speed & Draught 8,664 0.02% 

Speed & Heading 47 0.00% 

Speed & Time Diff 3 0.00% 

Speed & Time Diff 2 92 0.00% 

Draught & Heading 17,184 0.04% 

Draught & Time Diff 476 0.00% 

Draught & Time Diff 2 378,119 0.79% 

Heading & Time Diff 1 0.00% 

Heading & Time Diff 2 379 0.00% 

Time Diff & Time Diff 2 58 0.00% 

Conclusion 2 

The in-depth analysis of data from the AIS database carried out above confirms that the lack 3 

of data integrity is a huge problem that both scientists and specialists in the field of data analysis 4 

face on a daily basis. The comprehensive list presented above confirms that both data gaps as 5 

well as numerous anomalies and outliers are not isolated phenomena. There are numerous 6 

missing data in the analyzed database. It is true that some of them can be supplemented based 7 

on the available information, but this is not always possible. In many cases, overlapping missing 8 

values in object-identifying variables render records useless. In addition, numerous outliers and 9 

anomalies present in the database make the data analysis process more difficult. An important 10 

factor affecting the possibility of data mining is the frequent inconsistency in designations and 11 

nomenclature. 12 
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