
S I L E S I A N U N I V E R S I T Y O F T E C H N O L O G Y P U B L I S H I N G H O U S E

SCIENTIFIC PAPERS OF SILESIAN UNIVERSITY OF TECHNOLOGY 2024

ORGANIZATION AND MANAGEMENT SERIES NO. 206

http://dx.doi.org/10.29119/1641-3466.2024.206.16 http://managementpapers.polsl.pl/

AN APPROACH FOR SOLVING 1

DIFFICULT SCHEDULING PROBLEMS 2

Piotr JĘDRZEJOWICZ1, Ewa RATAJCZAK-ROPEL2*, Izabela WIERZBOWSKA3 3

1 Gdynia Maritime University; p.jedrzejowicz@umg.gdynia.pl, ORCID: 0000-0001-6104-1381 4
2 Gdynia Maritime University; e.ratajczak-ropel@wznj.umg.gdynia.pl, ORCID: 0000-0002-3697-6668 5

3 Gdynia Maritime University; i.wierzbowska@wznj.umg.gdynia.pl, ORCID: 0000-0003-4818-4841 6
* Correspondence author 7

Purpose: The paper explores the integration of population-based methods and parallel 8

processing techniques, particularly leveraging Apache Spark, for optimizing scheduling 9

problems in real-world scenarios. 10

Design/methodology/approach: Diverse population-based strategies and various 11

improvement algorithms showcase adaptability and scalability in handling several scheduling 12

problems. 13

Findings: The approach is validated by computational experiments, proving its efficiency and 14

scalability. 15

Research limitations/implications: Future research may include finding more effective 16

improvement algorithms, and applying machine learning techniques for managing and 17

controlling strategies, that are used for exploration and intensification of the feasible solution 18

space. 19

Originality/value: The techniques outlined in the paper indicate promising directions for 20

further study and development. 21

Keywords: scheduling, optimization, population-based methods, parallelisation. 22

Category of the paper: Research Paper. 23

1. Introduction 24

Combinatorial optimization problems play a crucial role in various fields, ranging from 25

operations research and logistics to computer science and artificial intelligence. The essence of 26

these problems lies in the search for an optimal solution from a finite set of possible solutions, 27

where the feasible solutions form a discrete combinatorial structure. However, the inherent 28

complexity and difficulty of these problems pose significant challenges for efficient solution 29

methodologies. 30

284 P. Jędrzejowicz, E. Ratajczak-Ropel, I. Wierzbowska

Many combinatorial optimization problems, such as various scheduling problems (SP), 1

the traveling salesman problem (TSP) and the knapsack problem, belong to the NP class. 2

The difficulty in finding an optimal solution grows exponentially with the size of the input, 3

making these problems computationally challenging. Some combinatorial optimization 4

problems are even more challenging and fall into the category of NP-hard problems. 5

These are problems for which no known polynomial-time algorithm exists unless P equals NP. 6

NP-complete problems are a subset of NP-hard problems, and if a polynomial-time algorithm 7

exists for any NP-complete problem, it implies a polynomial-time algorithm for all problems 8

in NP. 9

The concept of NP-hardness and NP-completeness provides a theoretical framework for 10

understanding the inherent difficulty of certain optimization problems. While algorithms exist 11

for solving specific instances of these problems, finding a general solution algorithm remains 12

an open challenge. 13

Given the computational intractability of many combinatorial optimization problems, 14

researchers often resort to heuristic and approximation algorithms. Heuristics are rule-of-thumb 15

strategies that may not guarantee an optimal solution but aim to find a good solution within 16

a reasonable amount of time. Approximation algorithms provide solutions that are guaranteed 17

to be close to the optimal solution, often with a known bound on the solution quality. 18

Combinatorial optimization problems exhibit a rich tapestry of complexity, with many 19

problems residing in the realm of NP-hardness and NP-completeness. The development of 20

efficient algorithms for solving these problems remains an active area of research, fueled by 21

advancements in computational techniques, and algorithmic design. As technology continues 22

to evolve, the quest for tackling the complexity and difficulty of combinatorial optimization 23

problems persists, driving innovation and progress in optimization theory and practice. 24

The No Free Lunch Theorem, introduced by David Wolpert and William Macready in 1997 25

(Wolpert, Macready, 1997), is a powerful concept in the field of optimization. In essence, 26

it states that no optimization algorithm can outperform random search over all possible 27

optimization problems. This theorem challenges the notion of a one-size-fits-all algorithm and 28

emphasizes the importance of tailoring optimization approaches to the specific characteristics 29

of a problem. The theorem suggests that there is no universal algorithm that excels across all 30

combinatorial optimization problems. Each problem has its own unique structure, 31

and a successful optimization algorithm must exploit this structure to be effective. 32

Therefore, understanding the characteristics of the problem at hand becomes paramount. 33

To navigate the challenges posed by the No Free Lunch Theorem, researchers and 34

practitioners in combinatorial optimization have increasingly turned to customization and 35

problem-specific knowledge. Rather than relying on generic algorithms, tailoring optimization 36

approaches to the specific structure and constraints of a given problem is key. 37

 38

An approach for solving difficult scheduling problems 285

This paper presents an exploration of optimizing scheduling problems in real-world 1

contexts through the integration of population-based methods and parallel processing 2

techniques utilizing Apache Spark environment. It investigates various approaches such as 3

metaheuristic algorithms, problem-specific heuristics, and hybrid methods that combine 4

different optimization techniques for solving some computationally hard scheduling problems. 5

To obtain satisfactory results one needs approaches offering scalability, adaptability, 6

parallelization, and capability of learning and evolving over time. The originality of this paper 7

relies on designing and validating original software framework applied for solving different 8

scheduling problems. We believe that by tackling scheduling problems one would arrive at 9

ideas helpful for solving a variety of the combinatorial optimization problems. 10

The rest of the paper is organized as follows. In Section 2 a brief description of scheduling 11

problems is given and two techniques are discussed – population-based optimization and 12

solution space search parallelization. Section 3 describes three computationally difficult 13

scheduling problems subsequently used as the test-bed for computational experiment. Section 14

4 describes the proposed parallelized population-based approach. Section 5 contains details of 15

the proposed implementation for solving the test-bed problems. Section 6 describes 16

computational experiment and its results. Finally, Section 7 contains conclusions and ideas for 17

future research. 18

2. Literature Review 19

2.1. Scheduling 20

Scheduling problems are ubiquitous and critical across numerous industries and domains. 21

They represent a broad class of optimization problems that involve assigning resources to 22

activities over time, typically with the goal of optimizing one or more objectives such as 23

minimizing total duration, maximizing efficiency, or balancing resource utilization. 24

These problems are found in manufacturing, logistics, healthcare, project management, 25

and many other sectors. 26

Diverse applications include: 27

 Manufacturing: In manufacturing, scheduling problems such as the Job Shop 28

Scheduling Problem (JSSP) or the Flexible Job Shop Scheduling Problem (FJSSP) are 29

vital. Efficient scheduling ensures optimal machine utilization, reduces waiting times, 30

and accelerates product delivery, directly impacting production costs and customer 31

satisfaction. 32

 33

286 P. Jędrzejowicz, E. Ratajczak-Ropel, I. Wierzbowska

 Project Management: In project management, the Resource-Constrained Project 1

Scheduling Problem (RCPSP) and its modifications such as the Multi-Skill Resource-2

Constrained Project Scheduling Problem (MS-RCPSP) are considered. They entail 3

assigning resources to tasks while adhering to various constraints that restrict resource 4

allocation. Effective scheduling is crucial for timely project completion, optimal 5

resource utilization, and cost management. 6

 Healthcare: In healthcare, scheduling involves staff rostering, patient appointment 7

systems, and operating room management. Effective scheduling is essential for patient 8

care quality, reducing wait times, and maximizing healthcare provider efficiency. 9

 Transportation and Logistics: Scheduling is key in transportation for route planning and 10

fleet management. It ensures timely deliveries, optimizes fuel consumption, 11

and improves service quality. In logistics, scheduling affects warehouse operations, 12

loading/unloading activities, and distribution strategies. 13

 IT and Computing: In the realm of IT, task scheduling in distributed and cloud 14

computing environments is critical for balancing loads, optimizing computational 15

resources, and reducing latency. 16

Efficient scheduling leads to cost savings, enhanced productivity, better service quality, 17

and improved overall operational efficiency. In industries like manufacturing and 18

transportation, it directly influences profitability and competitiveness. In social contexts, 19

such as healthcare and public services, it significantly impacts service accessibility and quality. 20

The importance of solving various scheduling problems cannot be overstated. They are 21

pivotal in optimizing operations, enhancing service quality, reducing costs, and improving 22

overall efficiency in diverse sectors. However these problems are also NP-hard, meaning they 23

are computationally intensive and challenging to solve, especially for large-scale instances. 24

Therefore, as essential tools in solving complex scheduling problems, scalable and flexible 25

metaheuristics have emerged, that balance between exploration and exploitation to find near-26

optimal solutions in reasonable time frames. 27

Popular metaheuristics for scheduling include: 28

 Genetic Algorithms (GA) (Sampson, 1976; Wu et al., 2004; Squires et al., 2022; Ajmal 29

et al., 2021): Mimic the process of natural selection, effectively used in job scheduling 30

and resource allocation. 31

 Simulated Annealing (SA) (Kirkpatrick et al., 1983; Elmohamed, Saleh, 1998; Dalila 32

et al., 2023; Lin et al., 2021): Inspired by the annealing process in metallurgy, useful in 33

solving job shop and flow shop scheduling problems. 34

 Tabu Search (TS) (Glover, Laguna, 1999; Amico, Trubian, 1993; Mathlouthi et al., 35

2021; Vela et al., 2020): Uses memory-based strategies to avoid cycling back to 36

previously explored solutions, effective in complex scheduling environments. 37

An approach for solving difficult scheduling problems 287

 Ant Colony Optimization (ACO) (Dorigo, Di Caro, 1999; Rajendran, Ziegler, 2004; 1

Yi et al., 2020) and Particle Swarm Optimization (PSO) (Kennedy, Eberthart, 1995; 2

Wang et al., 2018; Dalila et al., 2023; Pradhan et al., 2022): Inspired by the behavior of 3

ants and flocks of birds, respectively, these are used for their robustness in various 4

scheduling problems. 5

The application of metaheuristics in solving scheduling problems is driven by the need to 6

find high-quality solutions within a reasonable time frame, especially for problems that are too 7

complex for classical optimization methods. 8

2.2. Population-based Methods and Parallelisation 9

Apart of the choice of metaheuristics used to solve a scheduling problem, the efficiency of 10

searching for solutions may be improved by using population-based methods to expand the 11

search space and applying parallelism to speed up the search process. 12

Population-based methods offer significant advantages in solving various optimization 13

problems (Jędrzejowicz, 2020). The methods operate on a set of potential solutions 14

(a population of solutions) simultaneously. They excel in exploring large solution spaces, 15

handling complex constraints, and providing a balanced approach to both exploring new 16

solution areas and exploiting known good solutions. The adaptability and scalability of these 17

methods make them particularly suited for the dynamic and often computationally intensive 18

nature of scheduling problems. 19

Parallelisation represents a significant advancement in metaheuristics (Alba et al., 2013; 20

Coelho, Silva, 2021) and it improves the search in the following aspects: 21

 Handling large solution spaces: Many scheduling problems involve vast search spaces 22

that are computationally intensive to explore. Parallelism allows simultaneous 23

exploration of different regions of the solution space, significantly speeding up the 24

search process. 25

 Improving solution quality and diversity: Parallel metaheuristics can work on multiple 26

solutions concurrently, increasing the diversity of the solution pool. This diversity helps 27

in avoiding local optima and improves the overall quality of the solution. 28

 Reducing computational time: One of the primary benefits of parallelism is the 29

reduction in computational time. This is crucial for time-sensitive applications where 30

quick decision-making is essential. 31

 Scalability: parallelism enhances the scalability of metaheuristics, enabling them to 32

effectively solve larger and more complex scheduling problems that would be infeasible 33

with sequential methods. 34

To solve scheduling problems described in this paper both population-based methods and 35

parallelisation is used. 36

 37

288 P. Jędrzejowicz, E. Ratajczak-Ropel, I. Wierzbowska

2.2.1. Integration of Apache Spark in Metaheuristics 1

Apache Spark (Apache Spark, 2024), a powerful open-source distributed computing 2

platform supports the way parallelism is introduced in metaheuristics. Its ability to process 3

large-scale data across clusters of computers efficiently makes it particularly suitable for 4

enhancing metaheuristic algorithms, which are often computationally intensive and data-heavy. 5

Spark provides an accessible and scalable framework for deploying metaheuristics across 6

multiple nodes, allowing for simultaneous exploration of the solution space and faster 7

convergence to optimal solutions. 8

Spark's primary strength lies in its distributed computing capability, enabling the 9

partitioning of tasks across multiple nodes and facilitating in this way the implementation of 10

parallel versions of algorithms, where multiple subpopulations evolve in parallel. Moreover, 11

Spark's capability to handle large datasets seamlessly integrates with the data-intensive nature 12

of many optimisation problems, enabling more effective and efficient data processing and 13

analysis. 14

The synergy between Spark and metaheuristics drives significant advancements in solving 15

some of the most challenging problems in various domains (Lu et al., 2020; Aljame et al., 2020). 16

3. Test-bed Problems 17

In this paper, the integration of Apache Spark with population-based metaheuristics is 18

outlined to effectively parallelize the search for solutions in scheduling processes. To illustrate 19

this integration, three well-known NP-hard problems are selected: 20

 Job Shop Scheduling Problem (JSSP). The Job Shop Scheduling Problem is a classic 21

optimization problem in production and operations management. It involves scheduling 22

a number of jobs on a set of machines. Each job consists of a specific sequence of 23

operations, each of which must be processed on a specific machine for a certain period 24

of time. The objective is to minimize the total time required to complete all jobs (known 25

as the makespan). The challenge arises from the constraints: each machine can only 26

handle one operation at a time, and once an operation starts, it must run to completion 27

without interruption. 28

The problem was addressed in (Belmamoune et al., 2022; Wei et al., 2022; Shieh 29

et al., 2022; Jedrzejowicz Wierzbowska, 2023), each of these papers also contains the 30

formal definition of the problem. 31

 Flexible Job Shop Scheduling Problem (FJSP). The Flexible Job Shop Scheduling 32

Problem is a more complex variant of the traditional Job Shop Scheduling Problem. 33

In FJSP, each operation of a job can be processed on more than one machine, adding 34

an additional layer of complexity. The primary goal remains the minimization of the 35

An approach for solving difficult scheduling problems 289

total time to complete all jobs (makespan). This flexibility in machine assignment 1

introduces additional decision-making dimensions, as it requires determining not only 2

the sequence of operations for each job but also the optimal machine assignment for 3

each operation. 4

The problem was formally described and examined in (Han, Yang, 2021; Jiang, 5

Zhang, 2018; Nouri et al., 2017, Jedrzejowicz, Wierzbowska, 2022). 6

 Multi-Skill Resource-Constrained Project Scheduling Problem (MS-RCPSP). 7

The Multi-Skill Resource-Constrained Project Scheduling Problem is a complex 8

scheduling problem that involves assigning renewable resources with varied skill sets 9

to specific tasks in a project. Each resource represents human staff and possesses a cost 10

rate and a unique combination of skills. Each task requires a specific set of skills to be 11

completed. The goal is to optimize the project schedule by minimizing the total project 12

duration, while adhering to resource availability, skill requirements and precedence 13

constraints. This problem is challenging due to the intricate balance required between 14

resource allocation, skill matching, and schedule optimization. 15

The MS-RCPSP was proposed in (Bellenguez, Néron, 2005) and its formal 16

definition can be found in (Bellenguez, Néron, 2005; Myszkowski et al., 2015; 17

Myszkowski et al., 2019). 18

4. Proposed Parallelized Population-based Approach 19

The approach applied in this study is population-based system which uses parallelisation 20

offered by Apache Spark. 21

4.1. System architecture 22

The system presented in this paper uses a population of individuals that represent solutions 23

to the given scheduling problem. After the initial population of solutions is generated 24

(at random or with the use of a number of heuristics), the solutions are improved by 25

optimization heuristic algorithms. These algorithms are internal optimizing programs and are 26

known as optimizing agents. Typically, a set of several agents is defined, with each one 27

improving the solution in a different way. 28

The optimizing agents receive solutions from the population, enhance them, and reintegrate 29

them into the population until the stopping criterion is met. The procedure varies across 30

different problems and approaches. It is referred to as a control strategy. The overall system 31

architecture is outlined in Figure 1. 32

 33

290 P. Jędrzejowicz, E. Ratajczak-Ropel, I. Wierzbowska

 1

Figure 1. Proposed system architecture schema. 2

Source: own study. 3

In the case of JSSP and FJSP problems the stopping criterion depends on the value of the 4

objective function of the best solution in the whole population of solutions, if the value remains 5

unchanged for a predefined number of consecutive cycles the process ends. 6

In the case of MS-RCPSP the average diversity in the population and the maximal number 7

of scheduling generation schemas (SGS) procedure calls are used as the stopping criterion. 8

An individual is represented by the sequence of activities with resources assigned. To generate 9

a solution from the sequence, the SGS is most often used. Computations are stopped when the 10

average diversity in the population is less than a fixed value or the number of SGS procedure 11

calls is greater than a predefined number. 12

There are many control strategies and successful implementation may define these 13

strategies in different ways. The expected result of any strategy that is used in the process is to 14

obtain a population that over time contains better and better solutions. The crucial aspect of 15

defining a strategy is utilisation of parallelism in execution of changes to the population. 16

4.2. Control strategies 17

The control strategies are responsible for optimization of the solutions in the population. 18

A variety of strategies may be defined and used in the system, differing in their approach to 19

selecting solutions, choosing heuristics for their improvement, or merging improved solutions 20

with the population. In this study two different strategies are used. 21

The first strategy – SSIA (strategy based on simple improvement agents) - uses optimizing 22

agents with relatively simple internal algorithms: they improve solutions by making a simple 23

adjustment on the solution. Upon successful improvement, the refined solution is reintroduced 24

back into the population, replacing the least effective solution that was initially drawn from it. 25

The complexity of each such algorithm is very low and in one cycle of improvements hundreds 26

An approach for solving difficult scheduling problems 291

or thousands such algorithms may be run. A single step of SSIA is shown in Figure 2. 1

A predefined number of such steps is run in one cycle of optimization. This strategy is used in 2

the case of JSSP and FJSP problems. 3

 4

Figure 2. Single step in SSIA strategy. 5

Source: own study. 6

The second strategy – SRLR (strategy based on reinforcement learning rules) – is used to 7

solve the MS-RCPSP problem. In this case the optimizing agents are slightly more complex. 8

They represent simple metaheuristic algorithms. In one cycle of improvement a fixed number 9

of such algorithms is run. In most cases the number does not exceed the population size. 10

A single step of SRLR is shown in Figure 3. A predefined number of such steps is run in one 11

cycle of optimization. 12

 13

Figure 3. Single step in SRLR strategy. 14

Source: own study. 15

4.3. Parallelisation of the Population-based Approach 16

Parallelisation involves dividing the main task into smaller, independent tasks that can be 17

executed concurrently. This concept can be applied to population-based systems as follows: 18

 19

292 P. Jędrzejowicz, E. Ratajczak-Ropel, I. Wierzbowska

 Division into Subpopulations: 1

o The entire population is divided into smaller subpopulations. One should recall the 2

island-based evolutionary algorithms. 3

o Each subpopulation is assigned to a separate processing unit or thread, allowing 4

simultaneous processing. 5

 Independent Evolution: 6

o Each subpopulation evolves independently. 7

o By evolving separately, these subpopulations explore different regions of the 8

solution space concurrently. Independent subpopulations are more likely to produce 9

diverse solutions (exploration). 10

 Interaction and Information Sharing: 11

o Periodically, the subpopulations are combined into one set and then divided again. 12

In this way, new subpopulations contain solutions from various areas of the solution 13

space. 14

o Such (indirect) information sharing helps in propagating good traits across the entire 15

population, preventing subpopulations from stagnating in local optima 16

(exploitation). 17

The optimization of the populations employing the SSIA strategy is illustrated in Figure 4, 18

while Figure 5 depicts the optimization utilizing the SRLR strategy. 19

 20

Figure 4. Optimization of the population with the use of SSIA. 21

Source: own study. 22

An approach for solving difficult scheduling problems 293

 1

Figure 5. Optimization of the population with the use of SEA. 2

Source: own study. 3

4.3.1. Incorporation of Apache Spark 4

In both the SSIA and SRLR strategies, a crucial component of the algorithm involves 5

concurrent execution of processes in k parallel threads. This is achieved by leveraging the 6

capabilities of Apache Spark, where each process runs independently in its dedicated thread 7

within the Apache Spark framework. 8

By implementing the parallelized approach, the system can leverage the benefits of 9

population-based methods — such as robustness and the ability to escape local optima — while 10

significantly improving computation efficiency and solution diversity. 11

5. Implementation for Scheduling Problems 12

In the context of scheduling problems there are several elements of the system that should 13

be defined to match the problem being solved, and these are: 14

 the form of solution, its structure and specific methods related to its processing, 15

particularly the function used for calculating the objective function and functions that 16

address constraint management, 17

 aforementioned methods for generating new solutions - either through randomization or 18

by employing basic heuristic techniques, 19

 methods that take solution or solutions and refine them to generate improved versions 20

(optimizing or improvement agents). 21

For all scheduling problems considered in this paper solutions are represented as lists. 22

 23

294 P. Jędrzejowicz, E. Ratajczak-Ropel, I. Wierzbowska

5.1. Improvement Agents 1

Improvement agents are specialized heuristic or metaheuristic optimization algorithms. 2

Each agent is designed to enhance given solution or solutions by applying specific 3

modifications. The introduction of these agents is crucial for dynamically refining solutions, 4

where each agent contributes uniquely to the problem-solving process. They operate on existing 5

solutions, applying techniques like mutation, crossover, or local search, to explore the solution 6

space more effectively and find improved solutions. The diversity and specific functions of 7

these agents are key to addressing the complex constraints and objectives of scheduling 8

problems. 9

The algorithms used in case of three considered problems are as follows: 10

For JSP and FJSP: 11

 RandomSwap – replaces elements representing jobs (or operations) on two random 12

positions in the list that represents a solution. 13

 RandomMove – takes at random one element representing job (or operation) from the 14

list that represents a solution and moves it to another, random position. 15

 RandomReorder – takes a random slice of the list representing a solution and shuffles 16

the elements in this slice (the order of its elements changes at random). 17

 Crossover – requires two solutions. A slice from the first solution is extended with the 18

missing elements in the order as in the second solution. 19

Additionaly for FJSP: 20

 RandomReverse – takes a random slice of the list representing a solution and reverses 21

the order of its elements. 22

 PSOmove – the agent performs one movement on each available particle (solution). 23

The movement is adapted to elements with discreet values. In the case of each particle 24

that has to be processed there is: current solution c of the particle, local best solution lB 25

of the particle and global best solution gB. The new solution is created in such a way, 26

that each i-th element of the list defining the resulting solution is obtained in the 27

following way: 28

𝑒(𝑖) = {

𝑐(𝑖), with probability 𝑝𝐶

𝑙𝐵(𝑖), with probability 𝑝𝐿𝑏

𝑔𝐵(𝑖), with probability 𝑝𝐺𝑏

 29

where pC, pLb and pGb are given as parameters, pC + pLb + pGb = 1. 30

The list created in the above way may result in obtaining a solution that is not feasible. 31

Thus, in the next step the solution’s excessive jobs/operations are removed from random 32

positions and instead the missing jobs/operations are inserted in the same positions to create 33

a feasible solution. 34

 35

An approach for solving difficult scheduling problems 295

For MS-RCPSP the improving algorithms are based on simple metaheuristics. All these 1

algorithms return the best solution found in the successive steps of the search process. Three of 2

them use the maxIt parameter representing the maximum number of iterations permitted without 3

observing any improvement. The algorithms are as follows: 4

 LSAm – Local Search Algorithm based on activities moving – moves activities in the 5

solution schedule. Simultaneously, the necessary change of assigned resources is 6

checked and performed. In one iteration all possible moves are checked and the best one 7

is carried out. 8

 LSAe – similar to LSAm, exchanging pairs of activities in the solution schedule instead 9

of moving activities. 10

 LSAc – Local Search Algorithm based on one-point crossover operator applied to the 11

pair of solutions. The crossover operation can be applied in each crossing point. 12

Hence for project with n activities maximum n-2 crossing points can be checked. 13

Because for some projects it may be too time consuming the algorithm stops after fixed 14

number of iteration without improvement. 15

 EPTA – Exact Precedence Tree Algorithm based on the concept of detecting 16

an optimum solution by enumeration for a part of the schedule consisting of some 17

activities. An exact solution for a part of the schedule is found. The beginning of the 18

schedule part is selected randomly without repetition. The size of the schedule part is 19

given as a parameter. The best solution found is remembered. 20

 PRA – Path-Relinking Algorithm where for a pair of solutions from the population 21

a path between them is constructed. Next, the best of the feasible solutions from the path 22

is selected. To construct the path of solutions the activities are moved to other possible 23

places in the schedule. Hence the iteration number is equal to n-3, where n is the number 24

of activities in the schedule. All possible moves are checked. Only feasible solutions are 25

accepted. The best solution found is retained. 26

As one can notice a diverse array of algorithms is employed to improve solutions, 27

illustrating the broad spectrum of complexity these algorithms can embody. On one end of this 28

spectrum, there are straightforward, relatively simple algorithms that make incremental 29

improvements to existing solutions. These simple algorithms are often focused on very basic 30

modification to the solution, such as for example swapping elements within a schedule. 31

On the other end, entire metaheuristic algorithms are utilized, which can be more complex and 32

robust, like for example EPTA. Such algorithms do not just tweak solutions; they explore the 33

solution space using more steps and are capable of making substantial, comprehensive 34

improvements. Another example involves employing a single move from a well-known 35

heuristic, such as Particle Swarm Optimization (PSO), similar to what is done in the PSOmove. 36

This range from simplicity to complexity in improvement algorithms allows for a versatile 37

approach to solving the scheduling problems presented in these papers, catering to the specific 38

needs and constraints of each problem. 39

296 P. Jędrzejowicz, E. Ratajczak-Ropel, I. Wierzbowska

5.2. Cache Memories 1

While solving JSSP another new feature has been used: so called cache memories. 2

The basic premise is that solutions are represented as lists. Agents tasked with improvement 3

aim to enhance current solutions by altering elements of these lists through methods like 4

moving, swapping, or adjusting parts. The incorporated cache memory serves to track and retain 5

the location (specific index within the list that represents the solution) of each solution's most 6

recent successful modification. This characteristic aids in concentrating the search efforts 7

around areas close to where the last successful alteration occurred. Utilizing the data in the 8

cache memory enhances the collaborative impact of the interactions between agents by guiding 9

them on which segment of the solution to concentrate on in subsequent steps. 10

6. Computational Experiments and Results 11

The experiments presented in this chapter regarding individual scheduling problems are 12

based on settings derived from the previous papers of the authors: (Jedrzejowicz Wierzbowska, 13

2022, 2023; Jedrzejowicz, Ratajczak-Ropel, 2023). 14

6.1. JSP 15

Experiments were run (Jedrzejowicz, Wierzbowska, 2023) on a benchmark dataset for the 16

JSSP problem: the set of 40 instances proposed by (Lawrence, 1985), that have sizes from 5x10 17

to 15x15. For each task from the dataset at least 30 runs were conducted, for which the average 18

errors and times have been calculated. The settings for the experiments may be found in 19

(Jedrzejowicz, Wierzbowska, 2023). 20

The results are shown in Tables 1 and 2 under the MPF+ heading (+ stands for the cache 21

memories from Sub-subsection 6.2.1. In both tables the results are compared with other recently 22

published algorithms. 23

In Table 1 results are compared with Q-Learning Algorithm, QL, (Belmamoune et al., 24

2022), and a hybrid EOSMA algorithm (Wei et al., 2022) that mixes the strategies of 25

Equilibrium Optimizer (EO) and Slime Mould Algorithm (SMA). The table shows average 26

values calculated from average results for all tasks in considered dataset. 27

 28

An approach for solving difficult scheduling problems 297

Table 1. 1
Comparison of results obtained by MPF+ with other recently published results (average 2

error and average running time) 3

MPF+

(Jedrzejowicz

Wierzbowska, 2023)

QL01

(Belmamoune et al.,

2022)

QL02

(Belmamoune et al.,

2022)

EOSMA

(Wei et al., 2022)

avg error avg time [s] avg error avg error avg error

1.50% 143.81 5.17% 8.35% 3.20%

Note. avg err – average error calculated in reference to the best-known solution values in terms of the solution 4
makespan. 5

Source: own study. 6

In Table 2 the results are compared with the results for the Coral Reef Optimization, 7

CROLS, (Shieh et al., 2022). The results are calculated from results for la instances presented 8

in the paper. For each instance, the results from the best model presented in (Shieh et al., 2022) 9

is taken into account. 10

In both tables the errors have been calculated in reference to the best-known solution values 11

in terms of the solution makespan. 12

In terms of running times, the algorithms QL0 and QL1 did not provide specific running 13

time information. The EOSMA algorithm required between 10 and 103 seconds to execute. 14

Table 2. 15
Comparison of results obtained by MPF+ with other recently published results (average 16

error and average running time for chosen la instances) 17

MPF+ CROL1 (Shieh et al., 2022) CROL2 (Shieh et al., 2022)

avg error avg time [s] avg error avg time [s] avg error avg time [s]

1.37% 126.96 0.32% 281.99 0.39% 257.13

Note. avg err - average error calculated in reference to the best-known solution values in terms of the solution 18
makespan. 19

Source: own study. 20

Analysis of results from Tables 1 and 2 reveals that MPF+ implementation for solving the 21

JSSP instances performs well as compared with several other approaches, for numerous 22

instances offering better performance or shorter computation time. 23

6.2. FJSP 24

A number of experiments was run (Jedrzejowicz, Wierzbowska, 2023) on a widely used 25

benchmark dataset: the set of ten FJSP problems by (Brandimarte, 1993), that includes instances 26

of the problem from the size of 10 jobs, 6 machines and 55 operations to the size of 20 jobs, 27

15 machines and 240 operations. 28

In the experiments the solutions in the initial population were drawn at random or created 29

with the use of the metaheuristic from (Ziaee, 2014). 30

In Table 3 the performance of the proposed method – MPF, with no cache mamories - 31

is compared with a number of approaches from other papers. The table presents average of the 32

best results obtained for all problems in the Brandimarte set. By the result we understand the 33

298 P. Jędrzejowicz, E. Ratajczak-Ropel, I. Wierzbowska

best value of the makespan found by the algorithm. In case of MPF and GATS+HM each 1

Brandimarte problem was solved more than once. 2

Table 3. 3
Performance of the MPF FJSP versus other approaches 4

MPF
AC-SD

(Han, Yang, 2021)

GWO

(Jiang, Zhang, 2018)

GATS+HM

(Nouri et al., 2017)

avg

makespan

avg

time [s]

avg

makespan*

avg

makespan*

avg

time [s]*

avg

makespan

avg

time [s]

183.7 65.8 216.9 182.2 545.0 178.3 42.26

Note. the star indicates that only one solution for each problem in the benchmark dataset was given in the 5
corresponding paper. 6

Source: own study. 7

The results, as presented in Table 3, demonstrate both satisfactory quality and competitive 8

computation time, making MPF a worthy addition to the set of available tools for solving FJSS 9

problem instances. 10

6.3. MS-RCPSP 11

The computational experiment has been carried out using the benchmark instances of 12

MS-RCPSP accessible as a part of Intelligent Multi Objective Project Scheduling Environment 13

(iMOPSE, 2024). The test set includes 36 instances representing projects consisting from 78 to 14

200 activities. The detailed descriptions and benchmark data analyses can be found in 15

(Myszkowski, 2015, 2019). 16

In the experiment the metaheuristics described in Section 5.2 have been used with 10 or 20 17

iterations. Solutions in the initial population were drawn at random or created with the use of 18

the heuristic. Tested populations include from 30 to 50 solutions. The stopping criteria have 19

been set as minimal average diversity in the population not greater than 0.01 and maximal 20

number of SGS procedure calls not greater than 10000. The more detailed description of the 21

proposed by authors approach can be found in (Jedrzejowicz, Ratajczak-Ropel, 2023). 22

The results for PPMHRL are shown in Tables 4 and 5. During the experiment the following 23

results were calculated and recorded: schedule duration (makespan), standard deviation (STD) 24

and computation time. Each problem instance has been solved 10 times and the results were 25

averaged over these solutions. 26

In Table 4 the results for two considered population sizes are provided, while in Table 5, 27

the comparison of the results from the literature. 28

Table 4. 29
Comparison of results obtained by the PPMHRL for two population sizes 30

PPMHRL(|P| = 30) PPMHRL(|P| = 50)

avg makespan STD avg time [s] avg makespan STD avg time [s]

333.6 3.7 954.3 327.8 4 1076.4

Note. STD – standard deviation. 31

Source: own study. 32

An approach for solving difficult scheduling problems 299

Table 5. 1
Comparison of results for approaches from the literature 2

GRAP

(Myszkowski, Siemieński, 2016)

DEGR

(Myszkowski et al., 2018)

GP-HH

(Lin et al., 2020)

avg

makespan
STD

avg

time [s]

avg

makespan
STD

avg

time [s]

avg

makespan
STD

avg

time [s]

341.4 3.4 349.7 332.5 5.1 1494.9 320.5 320.9 988.7

Note. STD – standard deviation. 3

Source: own study. 4

PPMHRL demonstrates promising results, with the population of 50 individuals 5

outperforming the one with 30. The average best result improves by 1.9%, AVG by 1.7%, 6

and the STD is slightly lower. Table 5 compares the obtained results with those from the 7

literature. The proposed approach's results are comparable to several recent papers, with one 8

population-based algorithm, GP-HH (Lin et al., 2020), standing out and outperforming others. 9

GP-HH achieves a better makespan value by an average of 0.7%, especially noticeable as the 10

number of activities increases. 11

7. Conclusions 12

Making operational decision is an important managerial task. Among variety of operational 13

problems there is a special class of computationally difficult ones. Finding optimum or 14

satisfactory solution of a difficult problem is not an easy task, with the quality and time needed 15

for finding such a solution could be a critical factor from the point of view of the performance, 16

and enterprise success. It is well-known that difficult operational problems include allocation 17

of categorical resources, routing, scheduling and other problems with a combinatorial 18

component. Main contribution of this article is proposing and validating an approach for 19

integrating population-based methods, and parallel computation technologies, enabling to 20

obtain high quality solutions to difficult scheduling problems using reasonable computational 21

resources, including reasonable computation time. We propose the adoption of parallel 22

processing techniques, with a particular emphasis on leveraging Apache Spark for simultaneous 23

execution of population-based metaheuristics. Apache Spark role in enhancing computational 24

efficiency and scalability aligns seamlessly with the demands of parallelized metaheuristics. 25

The study suggest the utilization of diverse population-based strategies and incorporating 26

various improvement algorithms within the population ensuring adaptability and scalability in 27

handling intricate scheduling complexities. The proposed framework has been validated 28

experimentally showing competitive performance as compared with several state-of-the-art 29

approaches based on various metaheuristics. It should be noted that the proposed framework 30

can be used for solving other combinatorial optimization problems. 31

300 P. Jędrzejowicz, E. Ratajczak-Ropel, I. Wierzbowska

Future research will focus on finding more effective improvement algorithms, 1

and on applying machine learning techniques for managing and controlling strategies for 2

exploration and intensification of the feasible solution space. 3

Acknowledgements 4

All computations for FJSP and JSSP have been run on the Spark cluster at the Centre of 5

Informatics Tricity Academic Supercomputer and Network (CI TASK) in Gdansk. 6

References 7

1. Ajmal, M.S., Iqbal, Z., Khan, F.Z., Ahmad, M., Ahmad, I., Gupta, B.B. (2021). Hybrid ant 8

genetic algorithm for efficient task scheduling in cloud data centers. Computers and 9

electrical engineering, vol. 95. doi: 10.1016/j.compeleceng.2021.107419 10

2. Alba, E., Luque, G., Nesmachnow, S. (2013). Parallel metaheuristics: recent advances and 11

new trends. International transactions in operational research, 20(1), pp. 1-48, doi: 12

10.1111/j.1475-3995.2012.00862.x 13

3. Aljame, M., Ahmad, I., Alfailakawi, M. (2020). Apache spark implementation of whale 14

optimization algorithm. Cluster computing, vol. 23, 09. doi: 10.1007/s10586-020-03162-7 15

4. Apache Spark. Retrieved from: https://spark.apache.org/, 20.02.2024. 16

5. Bellenguez, O., Néron, E. (2005). Lower bounds for the multi-skill project scheduling 17

problem with hierarchical levels of skills. In: E. Burke, M. Trick (Eds.), Practice and theory 18

of automated timetabling (pp. 229-243). Berlin/Heidelberg: Springer. 19

6. Belmamoune, M.A., Ghomri, L., Yahouni, Z. (2022). Solving a job shop scheduling 20

problem using Q-learning algorithm. In: T. Borangiu, D. Trentesaux, P. Leitão (Eds.), 21

Service oriented, holonic and multi-agent manufacturing systems for industry of the future 22

(pp. 196-209). Cham: Springer International Publishing, doi: 10.1007/978-3-031-24291-23

5_16 24

7. Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. 25

Annals of operations research, Vol. 41, pp.157-183, doi: 10.1007/BF02023073 26

8. Coelho, P., Silva, C. (2021). Parallel metaheuristics for shop scheduling: enabling Industry 27

4.0. Procedia computer science, Vol. 180, pp. 778-786, doi: 10.1016/j.procs.2021.01.328 28

9. Dell’Amico, M., Trubian, M. (1993). Applying tabu search to the job-shop scheduling 29

problem. Annals of operations research, Vol. 41, pp. 231-252, doi: 10.1007/BF02023076 30

https://doi.org/10.1007/BF02023073

An approach for solving difficult scheduling problems 301

10. Dorigo, M., Di Caro, G. (1999). Ant colony optimization: A new meta-heuristic. Vol. 2, 1

doi: 10.1109/CEC.1999.782657.16 2

11. Elmohamed, M.A.S., Coddington, P., Fox, G. (1998). A comparison of annealing 3

techniques for academic course scheduling. In: E. Burke, M. Carter (Eds.) Practice and 4

theory of automated timetabling II, pp. 92-112. Berlin/Heidelberg: Springer. 5

12. Fontes, D.B., Homayouni, S.M., Gonçalves, J.F. (2023). A hybrid particle swarm 6

optimization and simulated annealing algorithm for the job shop scheduling problem with 7

transport resources. European Journal of Operational Research, Vol. 306, no. 3, pp. 1140-8

1157, doi: 10.1016/j.ejor.2022.09.006 9

13. Glover, F., Laguna, M. (1999). Tabu search I, Vol. 1, doi: 10.1287/ijoc.1.3.190 10

14. Han, B., Yang, J.J. (2021). A deep reinforcement learning based solution for flexible job 11

shop scheduling problem. International journal of simulation modelling, Vol. 20, pp. 375-12

386, doi: 10.2507/IJSIMM20-2-CO7 13

15. Intelligent Multi Objective Project Scheduling Environment (iMOPSE). Project homepage. 14

http://imopse.ii.pwr.wroc.pl/ 20.02.2024 15

16. Jedrzejowicz, P. (2019). Current trends in the population-based optimization. 16

In: N.T. Nguyen, R. Chbeir, E. Exposito, P. Aniorté, B. Trawi ́nski (Eds.), Computational 17

collective intelligence (pp. 523-534). Cham: Springer International Publishing. 18

17. Jedrzejowicz, P., Ratajczak-Ropel, E. (2023). Parallelized population-based multi-19

heuristic system with reinforcement learning for solving multi-skill resource-constrained 20

project scheduling problem with hierarchical skills, pp. 243-250, doi: 21

10.115439/2023F2826 22

18. Jedrzejowicz, P., Wierzbowska, I. (2022). Implementation of the mushroom picking 23

framework for solving flexible job shop scheduling problems in parallel. Procedia Comput. 24

Sci., Vol. 207(C), pp. 292-298, doi: 10.1016/j.procs.2022.09.062 25

19. Jedrzejowicz, P., Wierzbowska, I. (2023). Mushroom picking framework with cache 26

memories for solving job shop scheduling problem, pp. 157-164. doi: 10.15439/2023F9294 27

20. Jiang, T., Zhang, C. (2018). Application of grey wolf optimization for solving combinatorial 28

problems: Job shop and flexible job shop scheduling cases. IEEE Access, Vol. 6, pp. 26231-29

26240, doi: 10.1109/ACCESS.2018.2833552 30

21. Kennedy, J., Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95 - 31

International Conference on Neural Networks, Vol. 4, pp. 1942-1948, doi: 32

10.1109/ICNN.1995.488968 33

22. Kirkpatrick, S., Gelatt, C., Vecchi, M. (1983). Optimization by simulated annealing. 34

Science, Vol. 220. New York, pp. 671-80, doi: 10.1126/science.220.4598.671 35

23. Lawrence, S. (1984). Resource constrained project scheduling - technical report. 36

Pittsburgh, PA, USA: Carnegie-Mellon University. 37

https://doi.org/10.2507/IJSIMM20-2-CO7
http://imopse.ii.pwr.wroc.pl/
https://doi.org/10.1016/j.procs.2022.09.062
https://doi.org/10.1109/ACCESS.2018.2833552
https://doi.org/10.1109/ICNN.1995.488968

302 P. Jędrzejowicz, E. Ratajczak-Ropel, I. Wierzbowska

24. Lin, J., Zhu, L., Gao, K. (2020). A genetic programming hyper-heuristic approach for the 1

multi-skill resource constrained project scheduling problem. Expert systems with 2

applications, Vol. 140, doi: 10.1016/j.eswa.2019.112915 3

25. Lin, S.W., Cheng, C.Y., Pourhejazy, P., Ying, K.C. (2021). Multi-temperature simulated 4

annealing for optimizing mixed-blocking permutation flowshop scheduling problems. 5

Expert systems with applications, Vol. 165, doi: 10.1016/j.eswa.2020.113837 6

26. Lu, H.C., Hwang, F., Huang, Y.H. (2020). Parallel and distributed architecture of genetic 7

algorithm on Apache Hadoop and Spark. Applied Soft Computing, Vol. 95, doi: 8

10.1016/j.asoc.2020.106497 9

27. Mathlouthi, I., Gendreau, M., Potvin, J.Y. (2021). A metaheuristic based on tabu search for 10

solving a technician routing and scheduling problem. Computers operations research, 125, 11

p. 105079. doi: 10.1016/j.cor.2020.105079 12

28. Myszkowski, P.B., Laszczyk, M., Nikulin, I. and Skowroński, M. (2019). Imopse: a library 13

for bicriteria optimization in multi-skill resource-constrained project scheduling problem. 14

Soft computing, Vol. 23, pp. 3397-3410. doi: 10.1007/s00500-017-2997-5 15

29. Myszkowski, P.B., P. Olech Łukasz, Laszczyk, M., Skowroński, M.E. (2018). Hybrid 16

differential evolution and greedy algorithm (DEGR) for solving multi-skill resource-17

constrained project scheduling problem. Applied soft computing, Vol. 62, pp. 1-14. doi: 18

10.1016/j.asoc.2017.10.014 19

30. Myszkowski, P.B., Siemieński, J.J. (2016). Grasp applied to multi–skill resource–20

constrained project scheduling problem. In: N.T. Nguyen, L. Iliadis, Y. Manolopoulos, 21

B. Trawiński (Eds.), Computational collective intelligence (pp. 402-411). Cham: Springer 22

International Publishing. 23

31. Myszkowski, P.B., Skowroński, M.E., Sikora, K. (2015). A new benchmark dataset for 24

multiskill resource-constrained project scheduling problem. 2015 federated conference on 25

computer science and information systems (FEDCSIS), pp. 129-138. doi: 10.15439/ 26

2015F273 27

32. Nouri, H.E., Belkahla Driss, O., Ghedira, K. (2017). Solving the flexible job shop problem 28

by hybrid metaheuristics-based multiagent model. International journal of industrial 29

engineering, Vol. 1, 05, pp. 1-14. doi: 10.1007/s40092-017-0204-z 30

33. Pradhan, A., Bisoy, S.K., Das, A. (2022). A survey on PSO based meta-heuristic scheduling 31

mechanism in cloud computing environment. Journal of King Saud University – computer 32

and information sciences, Vol. 34(8, Part A), pp. 4888-4901. doi: 10.1016/ 33

j.jksuci.2021.01.003 34

34. Rajendran, C., Ziegler, H. (2004). Ant-colony algorithms for permutation flowshop 35

scheduling to minimize makespan/total flowtime of jobs. European journal of operational 36

research, 155(2), pp. 426-438. Financial Risk in Open Economies. doi: 10.1016/S0377-37

2217(02)00908-6 38

https://doi.org/10.1016/j.eswa.2020.113837
https://doi.org/https:/doi.org/10.1016/j.asoc.2020.106497
https://doi.org/10.1007/s40092-017-0204-z
https://doi.org/10.1016/j.jksuci.2021.01.003
https://doi.org/10.1016/j.jksuci.2021.01.003

An approach for solving difficult scheduling problems 303

35. Sampson, J. (1976). Adaptation in natural and artificial systems (John H. Holland). 1

Siam review, Vol. 18, 07, doi: 10.1137/1018105 2

36. Shieh, C.S., Nguyen, T.T., Lin, W.W., Nguyen, D.C., Horng, M.F. (2022). Modified coral 3

reef optimization methods for job shop scheduling problems. Applied sciences, Vol. 12(19), 4

Sep, p. 9867. doi: 10.3390/app12199867 5

37. Squires, M., Tao, X., Elangovan, S., Gururajan, R., Zhou, X., Acharya, U.R. (2022). 6

A novel genetic algorithm based system for the scheduling of medical treatments. 7

Expert systems with applications, Vol. 195, p. 116464. doi: 10.1016/j.eswa.2021.116464 8

38. Vela, C.R., Afsar, S., Palacios, J.J., González-Rodríguez, I., Puente, J. (2020). Evolutionary 9

tabu search for flexible due-date satisfaction in fuzzy job shop scheduling. Computers 10

operations research, Vol. 119, p.104931. doi: 10.1016/j.cor.2020.104931 11

39. Wang, D., Tan, D., Liu, L. (2018). Particle swarm optimization algorithm: an overview. 12

Soft computing, Vol. 22, 01, doi: 10.1007/s00500-016-2474-6 13

40. Wei, Y., Othman, Z., Mohd Daud, K., Yin, S., Luo, Q. (2022). Equilibrium optimizer and 14

slime mould algorithm with variable neighborhood search for job shop scheduling problem. 15

Mathematics, Vol. 10, 11, p. 4063. doi: 10.3390/math10214063 16

41. Wolpert, D., Macready, W. (1997) No free lunch theorems for optimization. IEEE 17

transactions on evolutionary computation, Vol. 1(1), pp. 67-82. doi: 10.1109/4235.585893 18

42. Wu, A., Yu, H., Jin, S., Lin, K.C., Schiavone, G. (2004) An incremental genetic algorithm 19

approach to multiprocessor scheduling. IEEE transactions on parallel and distributed 20

systems, Vol. 15(9), pp. 824-834. doi: 10.1109/TPDS.2004.38 21

43. Yi, N., Xu, J., Yan, L., Huang, L. (2020) Task optimization and scheduling of distributed 22

cyberphysical system based on improved ant colony algorithm. Future generation 23

computersystems, Vol. 109, pp. 134-148. doi: 10.1016/j.future.2020.03.051 24

44. Ziaee, M. (2014) A heuristic algorithm for solving flexible job shop scheduling problem. 25

The international journal of advanced manufacturing technology, Vol. 71, 03, pp. 519-528. 26

doi: 10.1007/s00170-013-5510-z 27

https://doi.org/10.1137/1018105
https://doi.org/10.3390/app12199867
https://doi.org/10.1007/s00500-016-2474-6
https://doi.org/10.1109/TPDS.2004.38

