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Purpose: The purpose of this paper is to explore the integration of reinforcement learning with 12 

simulation software to optimize Hyperloop transportation systems, aiming to enhance 13 

operational efficiency, reduce departure timetable variability, and improve station operations 14 

through dynamic dispatch prioritization. 15 

Design/methodology/approach: The research utilizes reinforcement learning combined with 16 

discrete-event simulation to model and optimize Hyperloop system operations, focusing on 17 

departure schedules, delay reduction, and dispatch prioritization. 18 

Findings: The research demonstrates that reinforcement learning significantly enhances 19 

Hyperloop system performance by optimizing departure schedules, reducing delays,  20 

and improving dispatch prioritization, leading to more efficient and reliable operations. 21 

Research limitations/implications: The study's limitations include the reliance on simulated 22 

data and hypothetical scenarios, which may not fully capture real-world complexities, and 23 

future research should focus on testing the proposed methods in actual Hyperloop environments 24 

and addressing potential scalability issues. 25 

Practical implications: The research identifies enhanced diagnostic methods for Hyperloop 26 

systems that could lead to more efficient and reliable operations, potentially reducing 27 

maintenance costs and downtime. The adoption of these methods can improve the safety and 28 

performance of Hyperloop services, thereby boosting commercial viability and economic 29 

benefits for businesses involved in the development and operation of this high-speed 30 

transportation technology. 31 

Social implications: This research on Hyperloop diagnostics could significantly influence 32 

public attitudes towards the acceptance and adoption of high-speed vacuum transportation, 33 

highlighting its safety and efficiency. Improved diagnostic methods will enhance the reliability 34 

of Hyperloop systems, promoting sustainable and environmentally friendly transportation 35 

alternatives. Additionally, the findings could inform public and industry policy, encouraging 36 

investment in advanced transportation infrastructure, ultimately improving quality of life 37 

through reduced travel times and lower emissions. 38 
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Originality/value: This paper presents novel diagnostic methods tailored for the unique 1 

conditions of Hyperloop systems, such as high-speed vacuum environments. It offers valuable 2 

insights for engineers, researchers, and policymakers involved in the development and 3 

implementation of advanced transportation technologies. 4 

Keywords: Artificial Intelligence, Hyperloop, FlexSim Simulation, Operational Efficiency, 5 

Reinforcement Learning. 6 

Category of the paper: Research paper. 7 

1. Introduction 8 

The Hyperloop, initially conceptualized by George Medhurst and re-envisioned by Elon 9 

Musk in 2013, epitomizes a sustainable, high-speed transportation system utilizing 10 

electromagnetic propulsion within low-pressure tubes. This innovation promises drastic 11 

reductions in travel times and environmental impacts, aligning with the goals of the Green 12 

Industrial Revolution by decreasing greenhouse gas emissions and energy consumption 13 

(Premsagar, Kenworthy, 2022). With global research and development accelerating, Hyperloop 14 

technologies are poised to transform the transportation of passengers and freight, marking  15 

a shift towards a more efficient and sustainable future (Barbosa, 2020). Simultaneously, 16 

Artificial Intelligence (AI) has advanced from its nascent symbolic and rule-based frameworks 17 

to sophisticated neural networks and machine learning techniques, enriching problem-solving 18 

across various sectors, including education and healthcare (Zerilli et al., 2021). This progression 19 

is underscored by the emergence of Reinforcement Learning (RL), which through Markov 20 

decision processes, enables agents to learn and optimize behaviours via trial-and-error,  21 

thus enhancing decision-making in dynamic environments (Sutton, Barto, 1998).  22 

When combined with neural networks, RL—through deep reinforcement learning—has 23 

initiated groundbreaking improvements across diverse fields such as queue management and 24 

crisis resource allocation (Mnih et al., 2015). In the realm of transportation, AI's integration is 25 

further amplified by simulation technologies like FlexSim, which optimize logistics and 26 

potentially reduce environmental footprints. However, the deployment of such simulations 27 

raises critical concerns regarding overfitting and data privacy, necessitating robust  28 

AI governance to ensure fairness and transparency (Marquis et al., 2020). This paper examines 29 

the integration of an RL model into FlexSim for optimizing Hyperloop station operations, 30 

aiming to enhance operational efficiency and adjust departure schedules in response to 31 

fluctuating passenger demands. 32 

  33 
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2. Literature Review 1 

Introduced by Elon Musk in 2013, the Hyperloop utilizes electromagnetic propulsion to 2 

transport passengers and goods at high speeds through low-pressure tubes, offering potential 3 

energy efficiency and minimal environmental impact. Despite its transformative promise,  4 

the Hyperloop confronts significant challenges including the necessity for full-scale testing 5 

facilities to emulate real-world conditions (Mitropoulos et al., 2021), safety concerns like 6 

motion sickness from rapid travel (Almujibah et al., 2020), and high capital costs which may 7 

limit access primarily to higher-income groups (Premsagar, Kenworthy, 2023). The system also 8 

requires the integration of vehicle and infrastructure design, demanding advanced optimization 9 

to meet complex parameters and secure stakeholder confidence (Kirschen, Burnell, 2021). 10 

Overcoming these technical and social hurdles through focused research and strategic 11 

policymaking is essential for successful Hyperloop implementation (Kupriyanovsky et al., 12 

2020). 13 

FlexSim, a discrete-event simulation software, effectively constructs three-dimensional 14 

models of systems, enhancing operations across industries by identifying bottlenecks and 15 

optimizing processes (Garrido, 2009). In manufacturing, it boosts productivity and efficiency 16 

by simplifying complex procedures (Yi-jun, 2011), and in logistics, it improves warehouse 17 

operations and system decision-making (Xing-hua, 2009). Moreover, FlexSim’s educational 18 

applications provide practical operational insights, improving learning outcomes in logistics 19 

and industrial engineering (Ru, 2012). 20 

AI revolutionizes transportation management through advanced route scheduling and 21 

dynamic response systems. For example in aviation, AI may optimize fleet routing to enhance 22 

profitability and service quality (Yan, Tseng, 2002), while in queue management, reinforcement 23 

learning (RL) techniques can reduce waiting times and optimize space usage (Sun et al., 2022). 24 

AI also refines simulation accuracy in transport logistics, crucial for applications like FlexSim 25 

(Marquis et al., 2020), and improves route and energy management through predictive analytics 26 

(Pal, 2023; Zhang et al., 2021). 27 

3. Research methodology 28 

The study employed the FlexSim simulation environment to design and evaluate a dynamic-29 

flow process. This involved developing a code environment in Visual Studio, which was 30 

divided into four segments: environment, interface, training process and FlexSim process flow 31 

code directly related to the objective function adopted. 32 
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The environment designed in FlexSim to reflect a hypothetical Hyperloop capsule station 1 

is shown in Figure 1. 2 

 3 

Figure 1. Presented concept of hyperloop station simulation made in Flexsim software.  4 

Source: own elaboration. 5 

Visual and interactive simulations made it possible to visualize the sequence of events,  6 

both temporally and spatially, thereby improving the identification of bottlenecks and the 7 

optimization of the passenger dispatch process. The adaptability and precision of FlexScript is 8 

crucial for testing various scenarios and refining the model to achieve more accurate and 9 

relevant outcomes (Nordgren, 2002). 10 

3.1. Reinforcement learning integration 11 

The framework, structured in multiple layers, leverages the Open AI Gym library (currently 12 

Gymnasium library) to develop, evaluate, and enhance reinforcement learning algorithms, 13 

supporting essential data transformations and complex array management through NumPy for 14 

real-time processing (see: Terry et al., 2020). It was than integrated with standard Python 15 

libraries such as os, subprocess, and socket to manage system processes and facilitate network 16 

communication, ensuring robust infrastructure for continuous data exchange and command 17 

operations with FlexSim. The interaction itself is enabled by the Python socket library, allowing 18 

real-time communication with the FlexSim application.  19 

 20 

Figure 2. Code snippet from flexsim_env.py script in Visual Studio. 21 

Source: own elaboration. 22 
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The architecture is based on FlexSimEnv (Figure 2), a custom Gym environment designed 1 

to interact seamlessly with FlexSim, employing methods like reset and step to adjust simulation 2 

states and manage interactions for consistent control (see: Yao, Chen, Zuo, 2014).  3 

In each simulation step, the function performing the step returns the state of the environment 4 

and the reward function. In addition, a rendering function is called, visualizing the progress of 5 

the simulation in the FlexSim environment. 6 

The integration of the FlexSim environment with the OpenAI Gym API allows for increased 7 

productivity and efficiency of the system by employing reinforcement learning algorithms such 8 

as Proximal Policy Optimization (PPO), Advantage Actor-Critic (A2C), Deep Q-Network 9 

(DQN), and Soft Actor-Critic (SAC), which learn optimal policies through environmental 10 

interactions (Figure 3). The implementation of these algorithms is facilitated by Stable 11 

Baselines 3, which supports model training and comparison, leveraging PyTorch and 12 

TensorFlow to accelerate processing via GPU. 13 

 14 

Figure 3. Reinforcement Learning with policy represented via DNN. 15 

Source: Mao, Alizadeh, Menache, Kandula, 2016. 16 

The training progress is monitored through Stable Baselines 3 custom callbacks using 17 

dynamically logging rewards. CUDA-enabled GPUs expedite computations through parallel 18 

processing, optimizing the handling of large models and datasets. The modularity of the code 19 

allows for seamless transitions between different RL algorithms by simply updating parameters 20 

in the setup function, significantly streamlining the testing process. Finally, training 21 

visualization plots average rewards against steps, providing critical insights into the 22 

effectiveness of the chosen algorithms and facilitating ongoing optimization 23 

3.2. Model inference 24 

Once the machine learning model has been trained it can be integrated with a Python-based 25 

HTTP server in order to enable dynamic, real-time interactions using data formatted in JSON. 26 

These data are then analyzed through Stable Baselines3, ensuring efficient predictions from 27 

incoming data streams (see: Seyidova, Shakhayev, 2023). Technically a special 28 

FlexSimInferenceServer class adeptly handles HTTP GET and POST requests and convert 29 

JSON formatted data into Python’s numpy arrays using transformation functions,  30 

and subsequently generating predictions with a Stable Baselines3 model, thereby returning the 31 
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outcomes back in JSON to support ongoing machine learning processes (Raschka, see: 1 

Patterson, Nolet, 2020). The main function initializes the server with a pre-trained PPO model 2 

and manages its operations until a shutdown signal is received, ensuring continual system 3 

oversight and effective real-time response capabilities (see: Raffin et al., 2021). 4 

3.3. Reward function calucation 5 

This study developed a dynamic reward system through a sequence of steps, each crucial 6 

for system functionality. First the system initializes objects representing people in a given 7 

colour. Concurrently, passengers are assigned with colours as codes for their destination –  8 

red (1), green (2), blue (3), yellow (4), orange (5). The same goes for pallets functioning as 9 

pods (Figure 6). This gives quick identification and enables easy tracking of system conditions. 10 

The system calculates the number of people linked to a given colour (pallets). Then the capsule 11 

capacity difference (places left) is computed by subtracting number of people from the 12 

maximum capsule capacity, which in the simulation was 25. 13 

 14 

Figure 4. Parameters and values in Flexsim Hyperloop Station simulation’s observational space.  15 

Source: own elaboration. 16 

The reward function model used in the training phase is defined as follows: 17 

Having: 18 

𝑐 – capacity difference (25 – number of people), 19 

𝑎 – average number of people in the queue, 20 

𝑛ᵢ – number of people of colour 𝑖 in the queue, where 𝑖 ∈ {red, green, blue, yellow, orange}, 21 

n – total number of people, 22 

C – capsule capacity (in the simulation C = 10), 23 

𝑣 – value of the reward for having more people than the average (in the simulation v = 5), 24 

A – the maximum reward function value (in the simulation A = 10), 25 

  26 
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The reward 𝑟 is calculated as follows: 1 

𝑟 =

{
 
 

 
 

𝐴                         if  𝑐 = 0
 

       𝐴 − 𝑐                 if  0 < 𝑐 ≤ 5
 

1

𝐶 + 1 − 𝑐
       if  𝑐 > 5

 (1) 

If the capacity difference c is 0, indicating full capacity, the reward is maximal (equal to  2 

A = 10). If the capacity difference c ranges from 1 to 5, the reward decreases linearly from A.  3 

If the capacity difference exceeds 5, the reward is inversely proportional to the capacity 4 

difference c beyond the threshold of the maximum capsule capacity C. The piecewise function 5 

plot of reward function calculation is shown in Figure 5. 6 

 7 

Figure 5. Plot of Piecewise Function r(c) of reward function calculation. 8 

Source: own elaboration. 9 

Reward adjustments are made based on action alignment and whether the combined total of 10 

number of people n and those associated with a specific colour ni is within average number of 11 

people a.  12 

For each colour i  {‘red’, ‘green’, ‘blue’, ‘yellow’, ‘orange’} the reward function r is 13 

adjusted as follows: 14 

𝑟 = {
 𝑟  –  𝑣       if action =  𝑐𝑜𝑙𝑜𝑟 𝑖  and  𝑛𝑖 + 𝑛 ≤ a

 
𝑟 +  𝑣      if action =  𝑐𝑜𝑙𝑜𝑟 𝑖  and  𝑛𝑖 +  𝑛 > a

 15 

Rewards decrease by v = 5 if conditions are met, otherwise, they increase by the same 16 

amount. These calculated rewards update the node, influencing the system’s overall reward 17 

value based on the evaluated parameters. 18 

  19 
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4. Results 1 

The transition from conventional First In, First Out (FIFO) logistics, which lacked 2 

adaptability to variable demand, to the use of the Reinforcement Learning (RL) model 3 

represents a significant advancement. The RL model improves system efficiency by 4 

dynamically adjusting strategies based on real-time feedback, a necessary adaptation FIFO fails 5 

to make. Although initial RL applications demonstrated suboptimal results due to erratic 6 

behaviors, adjustments to the gamma parameter, which balances immediate versus future 7 

rewards, enhanced stability and performance. Early in the training phase, a sharp increase in 8 

average rewards indicates successful learning and performance improvements, despite 9 

fluctuations from strategy exploration. As training progresses, rewards continue to increase but 10 

at a slower rate, suggesting a stabilization in learning as strategies are refined towards optimal 11 

performance. 12 

 13 

Figure 6. Reinforced Learning Step Count vs. Average Reward. 14 

Source: own elaboration. 15 

In the later stages of training, specifically between 60,000 and 90,000 steps, the agent's 16 

performance exhibits minimal reward increases, stabilizing at a high level and suggesting  17 

a plateau in learning where further improvements may be negligible. This stabilization, 18 

characterized by minor fluctuations, indicates that the model is approaching peak performance, 19 

rendering additional training potentially redundant. Through iterative parameter optimization, 20 

particularly adjustments to the gamma parameter that significantly influences the discounting 21 

of future rewards, the model's performance and stability have improved. This enhancement is 22 

evidenced by a consistent rise in capsule fill statistics, reflecting the model’s increased 23 

efficiency and accuracy in the simulation scenarios and a reduction in variability across 24 

iterations, underscoring the necessity of fine-tuning of the reinforcement learning models.  25 

The training, conducted over four stages: 2048; 10,000; 40,000 and 90,000 steps, shows that 26 
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the designed model, intended for capsules with a 25-passenger capacity, achieves an average 1 

fill of 21.26 passengers, markedly surpassing the efficiency of simpler FIFO method 2 

applications. 3 

 4 

Figure 7. Box and whisker plot of RL Count vs. Capsule Fill.  5 

Source: own elaboration. 6 

In a research study examining reinforcement learning models, initial results showed a wide 7 

range in capsule fills with a lower median at 2048 steps. As the model progressed to 10,000 8 

steps, both the median fill and its range increased, indicating improvements. By 40,000 steps, 9 

there was a noticeable refinement in prediction accuracy, evidenced by higher median fills and 10 

reduced variability. At 90,000 steps, the model's performance stabilized significantly, achieving 11 

a median fill close to the target of 25 passengers and minimal variability, suggesting that the 12 

learning was nearing a plateau (Figure 10). Throughout the learning process, significant 13 

enhancements were observed across various metrics such as minimum, first quartile, median, 14 

third quartile, and maximum, with a decrease in the interquartile range indicating a decrease in 15 

variability and a stabilization of results. These observations underscore the importance of 16 

parameter optimization in enhancing the performance of reinforcement learning models. 17 

5. Discussion  18 

This research explores enhancing Hyperloop station operations using a Reinforcement 19 

Learning (RL) model, employing the Stable Baselines3 library and Proximal Policy 20 

Optimization algorithm within a FlexSim simulation. The goal is to optimize efficiency and 21 

reduce departure timetable variability amid fluctuating passenger flows by programming the 22 

RL system to prioritize the dispatch of Hyperloop capsules, tailored to transport up to  23 

25 passengers to five designated destinations based on passengers' shirt colours. Throughout  24 
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an 8-hour simulation, the model demonstrated rapid learning gains, achieving peak performance 1 

with consistent capsule fill rates and decreased variability. Furthermore, fine-tuning the gamma 2 

parameter significantly enhanced the stability and effectiveness of the model, highlighting the 3 

potential of RL to improve operational dynamics and environmental sustainability in complex 4 

transportation systems. 5 

Proximal Policy Optimization (PPO) navigates the balance between exploration and 6 

exploitation within Reinforcement Learning (RL) algorithms, necessitating comparative 7 

analyses with other RL techniques like Advantage Actor-Critic and Deep Q-Networks to 8 

determine the most effective under varying conditions. Enhanced by automated tuning methods 9 

such as Bayesian optimization and genetic algorithms, these models gain robustness by 10 

minimizing biases and optimizing performance efficiently. Expanding simulation models to 11 

encompass additional destinations, processors, tracks, and capsules enables a deeper evaluation 12 

of system capacity and efficiency, particularly vital in high-speed transportation systems where 13 

optimizing passenger wait times and capsule utilization is critical for efficiency and satisfaction. 14 

Additionally, incorporating variability in passenger arrivals, such as during peak periods, 15 

improves the adaptability of these strategies to dynamic demands, increasing the realism and 16 

utility of the models. Future research should validate these strategies while exploring cargo 17 

logistics optimization using RL, which takes into account operational factors like delivery 18 

windows and cargo priorities, ensuring comprehensive improvements in both passenger and 19 

cargo transport sectors. 20 

6. Conclusions 21 

This study examines the transformation from a traditional First In, First Out (FIFO) logistics 22 

model to a dynamic, adaptive system using Reinforcement Learning (RL), which continually 23 

adjusts to fluctuating demands and priorities, thereby enhancing operational efficiency. 24 

Implementing RL within the FlexSim environment has markedly increased operational 25 

efficiency in hyperloop transportation systems by optimizing time management, reducing costs, 26 

and increasing throughput; notably, the average passenger capacity per vehicle has risen 27 

significantly. Initial training phases demonstrate rapid learning, with rewards peaking during 28 

early stages and stabilizing as the system approaches near-optimal performance. Further 29 

refinements in the gamma parameter have improved stability across various training milestones, 30 

underlining RL's potential in achieving highly efficient and adaptable transportation solutions.  31 

This research not only contributes to the discourse on the potential applications of artificial 32 

intelligence, particularly reinforcement learning in transport systems, but also aims to improve 33 

the user experience of transport systems, as in the hyperloop under study, by optimizing 34 

operational indicators. Despite promising simulation results, the need for real-world validations 35 
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remains, highlighting the importance of further studies that extend these findings through 1 

practical applications and broader algorithm comparisons.  2 
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