2024

ORGANIZATION AND MANAGEMENT SERIES NO. 198

THE USAGE OF TAGUCHI METHODS IN INDUSTRY 4.0 CONDITIONS

Radosław WOLNIAK

Silesian University of Technology, Organization and Management Department, Economics and Informatics Institute; rwolniak@polsl.pl, ORCID: 0000-0003-0317-9811

Purpose: The purpose of this publication is to present the usage of Taguchi methods approach in Industry 4.0 conditions.

Design/methodology/approach: Critical literature analysis. Analysis of international literature from main databases and polish literature and legal acts connecting with researched topic.

Findings: The integration of Taguchi methods with Industry 4.0 signifies a profound advancement in manufacturing and quality management. Industry 4.0, with its advanced digital technologies such as the Internet of Things (IoT), big data analytics, artificial intelligence (AI), and cyber-physical systems, creates an environment that significantly enhances Taguchi's principles. This integration facilitates a more dynamic approach to process optimization, leveraging real-time data and sophisticated analytics to achieve superior quality and efficiency. Real-time data collection and advanced analytics enable precise application of Taguchi's experimental designs, enhancing responsiveness to process variations and improving product quality. Digital twins and automated process control systems further support robust design by allowing virtual testing and continuous adjustments. However, challenges such as data integration complexity, high implementation costs, and the integration of legacy systems must be addressed through strategic planning and investment. Overcoming these challenges can lead to substantial benefits, including improved data utilization, enhanced process optimization, and greater flexibility, driving significant advancements in manufacturing capabilities and operational excellence.

Originality/Value: Detailed analysis of all subjects related to the problems connected with the usage of Taguchi methods in Industry 4.0 conditions.

Keywords: Industry 4.0, Quality 4.0, quality management, quality methods, Taguchi methods. **Category of the paper:** literature review.

1. Introduction

In the context of Industry 4.0, which represents a transformative era characterized by the integration of advanced technologies such as the Internet of Things (IoT), big data analytics, artificial intelligence (AI), and cyber-physical systems, the Taguchi methods find renewed

relevance and application. Industry 4.0 is marked by the digitalization and connectivity of manufacturing processes, resulting in unprecedented opportunities for optimization, efficiency, and quality improvement.

One of the primary ways in which Taguchi methods can be effectively utilized in Industry 4.0 is through the enhanced data collection and analysis capabilities provided by modern digital technologies. In traditional manufacturing settings, Taguchi's methods relied on physical experimentation and manual data collection. However, Industry 4.0 introduces sophisticated sensors and data acquisition systems that continuously monitor and record process parameters in real time. This real-time data facilitates the application of Taguchi's experimental design principles on a much larger scale, allowing for more precise and timely adjustments to processes.

Advanced analytics and machine learning algorithms can process the vast amounts of data generated in an Industry 4.0 environment to identify patterns and correlations that were previously difficult to discern. By integrating Taguchi methods with these analytical tools, organizations can perform more complex and refined analyses of the factors affecting quality and performance. For instance, using machine learning models, manufacturers can simulate various scenarios and predict the impact of different variables on process outcomes, enabling more informed decisions about process optimization (Yanamandra et al., 2023).

The purpose of this publication is to present the usage of Taguchi methods approach in industry 4.0 condition.

2. The basics of Taguchi methods approach

The Taguchi methods, developed by the Japanese engineer and statistician Genichi Taguchi, represent an advanced approach to process optimization and experimental design in the fields of engineering and quality management. The primary goal of these methods is to minimize the impact of variability on product and process quality while simultaneously reducing production costs and enhancing operational efficiency.

A fundamental premise of Taguchi's methods is the belief that quality is influenced not only by controllable factors but also by the effects of random factors that introduce variability. Taguchi introduced the concept of the "loss function", which posits that even minor deviations from specifications can lead to costs for both the manufacturer and the consumer. Consequently, the objective is to design systems and processes to minimize these losses regardless of whether the factors are controllable or not (Barsalou, 2023; Maganga, Taifa, 2023).

The Taguchi methods rely on the application of "design of experiments" (DOE), which facilitates the systematic investigation of how various factors affect product or process quality. A key element is the use of "orthogonal arrays", which allow for efficient and economical

experimental planning. These arrays enable the simultaneous analysis of multiple variables, allowing for the drawing of conclusions with fewer experiments and resources. By using orthogonal arrays, Taguchi methods help identify the most influential factors and their optimal levels, thus improving the overall performance and robustness of processes. Moreover, Taguchi emphasized the importance of designing products and processes to be robust to variations, which means that they should perform consistently under a wide range of conditions. This approach shifts the focus from merely meeting specifications to achieving performance that remains stable despite external fluctuations. In essence, the Taguchi methods advocate for a proactive stance on quality improvement, where the aim is to make products and processes resilient to uncertainties and variations inherent in real-world scenarios.

Industry 4.0 technologies enable greater flexibility and adaptability in manufacturing processes. The real-time feedback provided by digital systems allows for immediate adjustments based on the results of Taguchi-based experiments. This dynamic capability ensures that processes can be continually optimized, rather than relying on static adjustments based on periodic evaluations (Wolniak, Grebski, 2018; Wolniak et al., 2019, 2020; Wolniak, Habek, 2015, 2016; Wolniak, Skotnicka, 2011; Wolniak, Jonek-Kowalska, 2021; 2022).

In the case of cyber-physical systems, where digital and physical processes are tightly integrated, Taguchi methods can be applied to optimize not only individual components but also the entire system's performance. By utilizing digital twins—virtual replicas of physical systems—manufacturers can simulate and analyze the effects of various factors on system behavior without disrupting actual operations. This approach aligns well with Taguchi's emphasis on (Jokovic et al., 2023) design and optimization, as it allows for thorough testing and refinement in a virtual environment before implementation in the physical world. Additionally, the principles of Taguchi methods can be incorporated into the design and implementation of smart manufacturing systems. By embedding Taguchi-based algorithms into production control systems, manufacturers can automate the adjustment of process parameters to maintain optimal performance despite variations and uncertainties. This integration ensures that the principles of robust design are applied consistently across all stages of production (Sułkowski, Wolniak, 2015, 2016, 2018; Wolniak, Skotnicka-Zasadzień, 2008, 2010, 2014, 2018, 2019, 2022; Gajdzik, Wolniak, 2023; Swarnakar et al., 2023).

Overall, the synergy between Taguchi methods and Industry 4.0 technologies enhances the ability to achieve high-quality outcomes, reduce variability, and optimize processes in an increasingly complex and interconnected manufacturing landscape. The combination of real-time data, advanced analytics, and adaptive systems allows for more effective application of Taguchi principles, leading to improved product quality, increased efficiency, and reduced operational costs (Singh et al., 2023).

Table 1 contains description of Taguchi methods key principles. This expanded table provides a thorough explanation of each key principle of Taguchi methods, outlining their significance and application in the context of quality management and process optimization.

Table 1. *Key principles of Taguchi methods*

Key principle	Description
Robust Design	Robust design is centered on creating products and processes that maintain
	performance and quality despite variations in external conditions and uncontrollable
	factors. This principle aims to enhance the reliability and durability of a product by
	minimizing sensitivity to factors such as material inconsistencies, environmental
	changes, and operational variations. By incorporating this principle, manufacturers can
	achieve consistent performance and high quality across a range of conditions, reducing
	the likelihood of defects and enhancing customer satisfaction.
Loss Function	The loss function introduced by Taguchi quantifies the economic impact of deviations
	from the target specification of a product or process. According to this principle,
	any deviation from the desired target results in a loss, even if the product still meets the
	basic requirements. This loss can manifest as increased costs for repairs, warranty
	claims, or customer dissatisfaction. The loss function emphasizes that quality
	improvement should focus not only on meeting specifications but also on minimizing
	the total cost of quality, which includes both tangible and intangible costs associated
	with deviations. By applying this principle, organizations can better understand the
	financial implications of quality and strive for designs and processes that minimize
	these losses.
Design of	Taguchi's methods incorporate the design of experiments (DOE) to systematically
Experiments (DOE)	investigate and optimize the effects of various factors on product and process
	performance. DOE involves planning, conducting, and analyzing controlled
	experiments to identify the relationships between input factors and output performance.
	By using Taguchi's orthogonal arrays and other experimental designs, manufacturers
	can efficiently explore multiple variables and their interactions while minimizing the
	number of experiments required. This approach helps in identifying the most
	significant factors and their optimal settings, leading to more informed decision-
	making and improved process efficiency. It also aids in achieving robust designs by
	testing products and processes under varied conditions to ensure consistent
	performance.
Orthogonal Arrays	Orthogonal arrays are a key tool in Taguchi's methods, providing a structured approach
	to experimental design. These arrays allow for the efficient testing of multiple factors
	and their interactions while using a reduced number of experiments. By organizing
	factors into arrays that balance the levels of each factor, Taguchi methods enable
	a comprehensive analysis of how different variables affect outcomes. This systematic
	approach helps in identifying the critical factors that influence performance and
	quality, facilitating more effective optimization and reducing the experimental
	workload. Orthogonal arrays also support robust design by enabling thorough testing of
	various conditions to ensure that the product or process remains reliable across
Signal-to-Noise	different scenarios. The Signal-to-Noise Ratio (SNR) is a measure used in Taguchi's methods to quantify
Ratio (SNR)	the robustness of a product or process. It evaluates the ratio of the desired signal
Ratio (SIVK)	(performance or quality) to the variability (noise) affecting it. By maximizing the SNR,
	manufacturers aim to enhance the consistency and reliability of their products and
	processes. High SNR indicates that the product or process performs well relative to the
	impact of noise factors, resulting in reduced variability and improved quality.
	Taguchi methods use SNR as a key metric in experimental design and analysis to
	optimize processes and achieve robust performance.
Control Factors vs.	Taguchi methods differentiate between control factors (variables that can be managed
Noise Factors	or adjusted) and noise factors (variables that cause variability but cannot be controlled).
1,0150 1 401015	The objective is to optimize control factors to improve performance while making the
	system less sensitive to noise factors. By focusing on controlling the impact of noise
	factors through robust design and optimizing the control factors, manufacturers can
	enhance product quality and process reliability. This principle emphasizes the
	importance of designing systems that can maintain consistent performance despite the
	presence of uncontrollable variations.
	P

Cont. table 1.

Continuous	Continuous improvement, also known as Kaizen in the context of Taguchi methods,
Improvement	involves an ongoing effort to enhance products, processes, and systems. This principle
	underscores the importance of regularly evaluating and refining designs and processes
	to achieve higher quality and efficiency over time. By applying Taguchi's methods to
	continuously monitor and improve performance, organizations can adapt to changing
	conditions, incorporate new insights, and maintain competitiveness. Continuous
	improvement aligns with the overall goal of achieving robust design and minimizing
	the impact of variability, ensuring sustained progress and excellence in manufacturing
	and quality management.

Source: (Almeida, Abreu, 2023; Jokovic et al., 2023; Khourshed, Gouhar, 2023; Maganga, Taifa, 2023; Liu et al., 2023; Yanamandra et al., 2023; Escobar et al., 2023; Bousdekis et al., 2023; Antony et al., 2023).

3. How Taguchi methods method can be integrated with Industry 4.0 and Quality 4.0 concept

The integration of Taguchi methods with Industry 4.0 represents a significant advancement in manufacturing and quality management practices. Industry 4.0, characterized by the seamless integration of digital technologies such as the Internet of Things (IoT), big data analytics, artificial intelligence (AI), and cyber-physical systems, provides a robust framework for enhancing the application of Taguchi's principles in modern industrial settings. One of the primary benefits of integrating Taguchi methods with Industry 4.0 is the enhancement of real-time data collection capabilities. Industry 4.0 technologies enable continuous monitoring of production parameters through advanced sensors and data acquisition systems. This real-time data allows for immediate feedback and adjustments, aligning well with Taguchi's emphasis on robust design. By leveraging this continuous stream of data, manufacturers can apply Taguchi's experimental designs more dynamically, optimizing processes and maintaining high quality despite variations (Alrabadi et al., 2023).

Advanced analytics and AI further amplify the effectiveness of Taguchi methods in an Industry 4.0 environment. The vast amounts of data generated in modern manufacturing settings can be processed using sophisticated analytics tools and machine learning algorithms. These technologies enable manufacturers to identify intricate patterns and correlations that may not be evident through traditional analysis methods (Jonek-Kowalska, Wolniak, 2021, 2022, 2023; Rosak-Szyrocka et al., 2023; Gajdzik et al., 2023; Jonek-Kowalska et al., 2022; Kordel, Wolniak, 2021; Orzeł, Ponomarenko et al., 2016; Stawiarska et al., 2020, 2021; Stecuła, Wolniak, 2022; Olkiewicz et al., 2021). By integrating Taguchi principles with these advanced analytical tools, organizations can perform more nuanced analyses of factors affecting performance and make more informed decisions to optimize process variables. The use of digital twins, which are virtual replicas of physical systems, represents another crucial aspect of integrating Taguchi methods with Industry 4.0. Digital twins allow for the simulation and

analysis of manufacturing processes in a virtual environment. This capability aligns with Taguchi's approach of robust design and optimization by enabling extensive testing and refinement without disrupting actual operations. Through digital twins, manufacturers can evaluate how different factors and conditions impact performance, leading to more effective and efficient process improvements (Bousdekis et al., 2023).

Automated process control systems, empowered by Industry 4.0 technologies, also play a significant role in integrating Taguchi methods. These systems can continuously adjust process parameters based on real-time data, ensuring that performance remains optimal. By applying Taguchi's principles within these automated control systems, manufacturers can maintain robust quality and performance, minimizing deviations and responding swiftly to changes in production conditions. Furthermore, Industry 4.0 enhances the scope and efficiency of experimental design, a core component of Taguchi methods. With the ability to process large datasets and automate experimentation, manufacturers can utilize Taguchi's orthogonal arrays more effectively. This advancement allows for a comprehensive analysis of multiple factors and their interactions, facilitating more precise optimization of processes and designs (Maganga, Taifa, 2023).

Adaptive manufacturing systems, which are integral to Industry 4.0, also benefit from the integration with Taguchi methods. These systems can quickly adapt to changes in production requirements or external conditions, and by applying Taguchi's principles, they can be continuously optimized to ensure robustness and efficiency. This adaptability ensures that processes remain consistent and reliable even as conditions evolve. Predictive maintenance, another significant aspect of Industry 4.0, leverages real-time data and analytics to foresee equipment failures before they occur. Integrating Taguchi methods into predictive maintenance strategies allows for the optimization of maintenance schedules and processes, ensuring that equipment performance is consistently maintained and operational disruptions are minimized (Antony et al., 2023; Escobar et al., 2023; Antony et al., 2023; Salimbeni, Redchuk, 2023).

Industry 4.0 facilitates scalable optimization across multiple production lines and facilities. Taguchi methods can be applied on a larger scale to maintain consistent quality and performance across diverse environments. By utilizing data from various sources, manufacturers can achieve comprehensive improvements and uphold high standards of quality throughout their operations (Jonek Kowalska, Wolniak, 2021; Jonek-Kowalska, Wolniak, 2022).

Table 2 is listing examples of integration of Taguchi methods method with Industry 4.0. This table illustrates how Taguchi methods can be integrated with Industry 4.0 technologies to enhance process optimization, quality control, and overall efficiency in modern manufacturing environments.

Table 2. *Taguchi methods integration with industry 4.0*

Aspect	Description	
Real-Time Data	Industry 4.0 technologies, such as IoT sensors and data acquisition systems, enable	
Collection	continuous monitoring of production parameters. Integrating Taguchi methods	
	with real-time data collection allows for dynamic adjustments and more accurate	
	application of experimental designs to improve process robustness.	
Advanced Analytics and		
AI	using advanced analytics and artificial intelligence. This integration helps in	
	identifying complex patterns and correlations, allowing for more precise	
	application of Taguchi's experimental designs and optimizing process variables.	
Digital Twins	Digital twins—virtual replicas of physical systems—allow for the simulation and	
	analysis of processes in a virtual environment. By integrating Taguchi methods	
	with digital twins, manufacturers can test and optimize designs and processes	
	virtually, reducing the need for physical experiments and enhancing robustness.	
Automated Process	Industry 4.0 enables the use of automated control systems that can continuously	
Control	adjust process parameters based on real-time data. Applying Taguchi principles in	
	these systems helps maintain optimal performance by adjusting variables to	
E 1 IE : I	minimize deviations and ensure robust quality.	
Enhanced Experimental		
Design	are significantly improved. Taguchi's orthogonal arrays can be utilized more effectively to analyze complex interactions between multiple factors, thanks to the	
	ability to process large datasets and automate experimentation.	
Adaptive Manufacturing	Industry 4.0 supports adaptive manufacturing systems that can quickly respond to	
Adaptive Manufacturing	changes in production requirements or external conditions. Integrating Taguchi	
	methods allows these systems to be optimized continuously, ensuring they remain	
	robust and efficient despite variability in the manufacturing environment.	
Predictive Maintenance	Predictive maintenance, powered by real-time data and analytics, helps in	
Tredictive Maintenance	anticipating equipment failures before they occur. By applying Taguchi methods	
	to maintenance strategies, manufacturers can optimize maintenance schedules and	
	processes to ensure equipment performance remains consistent and robust.	
Scalable Optimization	Industry 4.0 technologies facilitate the scaling of optimization efforts across	
	multiple production lines and facilities. Taguchi methods can be applied to large-	
	scale operations to maintain consistent quality and performance across diverse	
	environments, leveraging data from multiple sources for comprehensive	
	improvements	
	2022 I 1 1 2022 III 1 1 C 1 2022 M	

Source: (Almeida, Abreu, 2023; Jokovic et al., 2023; Khourshed, Gouhar, 2023; Maganga, Taifa, 2023; Liu et al., 2023; Amat-Lefort et al., 2023; Alrabadi et al., 2023; Singh et al., 2023; Barsalou, 2023; Antony et al., 2023; Saihi et al., 2023; Sureshchandar, 2023; Swarnakar et al., 2023; Gimerska et al., 2023; Salimbeni, Redchuk, 2023; Yanamandra et al., 2023; Escobar et al., 2023; Bousdekis et al., 2023; Antony et al., 2023).

Table 3 is describe the advantages Taguchi methods approach usage in industry 4.0. This table provides a clear overview of the various advantages of integrating Taguchi methods with Industry 4.0 technologies, emphasizing the enhanced capabilities and improvements that result from this integration.

Table 3. *The advantages of Taguchi methods integration with industry 4.0*

Advantage	Description		
Enhanced Data	Industry 4.0 technologies provide access to vast amounts of real-time data		
Utilization	through IoT sensors and monitoring systems. Integrating Taguchi methods		
	with these technologies allows for more effective use of this data in		
	optimizing processes and identifying critical factors affecting quality. This		
	results in more precise and informed decision-making.		
Improved Process	The combination of Taguchi's robust design principles with advanced		
Optimization	analytics and AI from Industry 4.0 enables more effective and dynamic		
	optimization of manufacturing processes. This integration helps identify		
	optimal settings for various process parameters, leading to improved		
	performance and efficiency.		
Real-Time	Industry 4.0 provides continuous monitoring capabilities, which when		
Performance	combined with Taguchi methods, allows for real-time adjustments based on		
Monitoring	experimental results. This leads to immediate improvements in process		
	performance and quality, as deviations can be promptly addressed.		
Increased	With Industry 4.0 tools, such as digital twins and automated		
Experimentation	experimentation systems, the efficiency of applying Taguchi's experimental		
Efficiency	designs is greatly enhanced. This results in reduced time and resource		
	expenditure for testing and optimizing processes, while providing more		
	accurate results.		
Enhanced Predictive	Integrating Taguchi methods with predictive maintenance systems powered		
Maintenance	by Industry 4.0 technologies helps in optimizing maintenance schedules. By		
	predicting potential failures and adjusting maintenance strategies		
	accordingly, manufacturers can reduce downtime and extend equipment		
	life.		
Scalable Quality	Industry 4.0 technologies enable scalable implementation of Taguchi		
Improvement	methods across multiple production lines and facilities. This scalability		
	ensures consistent quality and performance improvements across diverse		
	manufacturing environments, leading to uniform high standards.		
Greater Flexibility	The adaptive capabilities of Industry 4.0 systems, when combined with		
and Adaptability	Taguchi's principles, provide greater flexibility in manufacturing. Processes		
	can be adjusted in real-time to accommodate changes in production		
	requirements or external conditions, maintaining robustness and efficiency.		
Enhanced Robust	Taguchi methods emphasize robust design, and Industry 4.0 technologies		
Design	support this by allowing comprehensive simulation and analysis through		
	digital twins. This helps ensure that products and processes are designed to		
	perform reliably under various conditions, reducing variability and		
	improving overall quality.		
Cost Reduction	By leveraging real-time data, advanced analytics, and automated systems,		
	the integration of Taguchi methods with Industry 4.0 can significantly		
	reduce costs associated with quality control and process optimization.		
	Efficient experimentation and real-time adjustments lead to lower		
	production costs and fewer defects.		

Source: (Almeida, Abreu, 2023; Jokovic et al., 2023; Khourshed, Gouhar, 2023; Maganga, Taifa, 2023; Liu et al., 2023; Amat-Lefort et al., 2023; Alrabadi et al., 2023; Singh et al., 2023; Barsalou, 2023; Antony et al., 2023; Saihi et al., 2023; Sureshchandar, 2023; Swarnakar et al., 2023; Gimerska et al., 2023; Salimbeni, Redchuk, 2023; Yanamandra et al., 2023; Escobar et al., 2023; Bousdekis et al., 2023; Antony et al., 2023).

Table 4 is describe the problems of Taguchi methods approach usage in Industry 4.0 and methods to overcome them. This table highlights the potential challenges faced when integrating Taguchi methods with Industry 4.0 technologies, along with strategies for addressing these issues effectively.

Table 4. *The problems of Taguchi methods integration with industry 4.0*

Problems	Description of Problem	Overcoming Strategies
Data Integration	Integrating data from diverse sources	Develop a unified data integration
Challenges	such as IoT sensors, manufacturing	framework or middleware that
	systems, and enterprise software can	standardizes data formats and
	be complex. Inconsistent data formats	facilitates seamless communication
	and communication protocols may	between systems. Employ data
	hinder effective use of Taguchi	integration platforms to manage and
	methods.	harmonize data flows.
High	Implementing Industry 4.0	Conduct a cost-benefit analysis to
Implementation	technologies alongside Taguchi	prioritize investments in technology
Costs	methods may involve significant costs	that offers the highest return on
	related to new technologies,	investment. Explore phased
	infrastructure, and training. This can	implementation and incremental
	be a barrier for some organizations.	upgrades to manage costs more
		effectively.
Complexity of	The integration of Taguchi methods	Invest in training and upskilling for
Systems	with complex Industry 4.0 systems,	personnel to handle the complexities
Integration	such as digital twins and automated	of new systems. Collaborate with
	control systems, can be technically	technology providers and consultants
	challenging and may require	to facilitate smoother integration and
	specialized knowledge.	implementation processes.
Data Security and	The use of real-time data and	Implement robust cybersecurity
Privacy Concerns	interconnected systems in Industry 4.0	measures, including encryption,
	raises concerns about data security and	access controls, and regular security
	privacy. Ensuring that sensitive	audits. Develop a comprehensive
	information is protected while	data protection policy to address
	integrating with Taguchi methods is	privacy concerns and comply with
	crucial.	relevant regulations.
Over-Reliance on	Dependence on automated systems for	Maintain a balance between
Automated	process control and optimization,	automation and human oversight.
Systems	driven by Industry 4.0 technologies,	Ensure that key decision points and
	may lead to reduced human oversight.	quality checks involve human
	This can potentially overlook nuanced	expertise to complement automated
	issues that Taguchi methods aim to	systems and prevent potential
~ 11W Y	address.	oversight.
Scalability Issues	While Industry 4.0 offers scalability,	Develop standardized procedures and
	integrating Taguchi methods across	protocols for applying Taguchi
	multiple sites or production lines may	methods across different sites. Use
	present challenges, including ensuring	centralized data management systems
	consistency and uniformity in process	to ensure consistency in process
	optimization.	optimization and quality control.

Cont. table 4.

	T_, ,, ,_ ,_ ,,,	1
Complexity in	The application of Taguchi's	Use advanced analytical tools and
Experimental	experimental design principles can	software to manage and simplify
Design	become more complex when	experimental design. Implement
	integrated with the high volume of	automated systems for running and
	data and multiple variables in Industry	analyzing experiments to reduce
	4.0 environments.	complexity and improve efficiency.
Resistance to	Employees and management may	Implement change management
Change	resist adopting new technologies and	strategies, including training
	methods, such as Taguchi principles	programs and clear communication
	integrated with Industry 4.0 tools, due	about the benefits of integration.
	to a lack of familiarity or perceived	Engage stakeholders early in the
	disruption.	process to gain buy-in and support.
Integration of	Many industries still rely on legacy	Explore options for bridging legacy
Legacy Systems	systems that may not be easily	systems with modern technologies
	compatible with new Industry 4.0	through middleware or custom
	technologies. Integrating these older	interfaces. Gradually phase out
	systems with Taguchi methods can be	outdated systems while integrating
	problematic.	new solutions to ensure
		compatibility.

Source: (Almeida, Abreu, 2023; Jokovic et al., 2023; Khourshed, Gouhar, 2023; Maganga, Taifa, 2023; Liu et al., 2023; Amat-Lefort et al., 2023; Alrabadi et al., 2023; Singh et al., 2023; Barsalou, 2023; Antony et al., 2023; Saihi et al., 2023; Sureshchandar, 2023; Swarnakar et al., 2023; Gimerska et al., 2023; Salimbeni, Redchuk, 2023; Yanamandra et al., 2023; Escobar et al., 2023; Bousdekis et al., 2023; Antony et al., 2023).

4. Conclusion

The integration of Taguchi methods with Industry 4.0 represents a significant leap forward in manufacturing and quality management practices. Industry 4.0, characterized by its use of advanced digital technologies such as IoT, big data analytics, AI, and cyber-physical systems, provides a transformative environment that enhances the application of Taguchi's principles. This convergence allows for a more dynamic and robust approach to process optimization, leveraging real-time data and advanced analytics to achieve superior quality and efficiency.

The real-time data collection capabilities introduced by Industry 4.0 technologies enable more immediate and precise application of Taguchi's experimental designs. This integration facilitates a more agile response to process variations, leading to improved process robustness and product quality. Additionally, the use of advanced analytics and machine learning algorithms in Industry 4.0 environments enriches the analysis of complex data sets, enabling a deeper understanding of factors affecting performance and supporting more informed decision-making.

Digital twins, which offer virtual simulations of physical systems, align closely with Taguchi's emphasis on robust design by allowing extensive testing and optimization in a controlled virtual environment. This capability reduces the need for disruptive physical

experiments and enhances process refinement. Moreover, automated process control systems in Industry 4.0, empowered by Taguchi principles, ensure that processes maintain optimal performance and quality through continuous adjustments based on real-time data.

Despite these advancements, integrating Taguchi methods with Industry 4.0 is not without its challenges. Issues such as data integration complexity, high implementation costs, and the integration of legacy systems require thoughtful strategies and investments. Overcoming these challenges involves developing unified data frameworks, conducting costbenefit analyses, and implementing robust cybersecurity measures. Additionally, addressing scalability issues, complexity in experimental design, and resistance to change is crucial for successful integration.

The synergy between Taguchi methods and Industry 4.0 technologies promises significant benefits, including enhanced data utilization, improved process optimization, and increased flexibility. This integration not only advances manufacturing capabilities but also contributes to achieving higher standards of quality and operational excellence. By effectively addressing the associated challenges, organizations can harness the full potential of this integration to drive sustained improvements and competitive advantage in the modern industrial landscape.

References

- 1. Almeida, S., Abreu, L.P.M. (2024). The Quality Manager in the Industry 4.0 Era. *Lecture Notes in Mechanical Engineering*, 468-474.
- 2. Alrabadi, T.D.S., Talib, Z.M., Abdullah, N.A.B. (2023). The role of quality 4.0 in supporting digital transformation: Evidence from telecommunication industry. *International Journal of Data and Network Science*, 7(2), 717-728.
- 3. Amat-Lefort, N., Barravecchia, F., Mastrogiacomo, L. (2023). Quality 4.0: big data analytics to explore service quality attributes and their relation to user sentiment in Airbnb reviews. *International Journal of Quality and Reliability Management*, 40(4), 990-1008.
- 4. Antony, J., McDermott, O., Sony, M., Cudney, E.A., Doulatabadi, M. (2023). Benefits, challenges, critical success factors and motivations of Quality 4.0–A qualitative global study. *Total Quality Management and Business Excellence*, *34*(7-8), 827-846.
- 5. Antony, J., Sony, M., McDermott, O., Jayaraman, R., Flynn, D. (2023). An exploration of organizational readiness factors for Quality 4.0: an intercontinental study and future research directions. *International Journal of Quality and Reliability Management*, 40(2), 582-606.
- 6. Antony, J., Swarnakar, V., Sony, M., McDermott, O., Jayaraman, R. (2023). How do organizational performances vary between early adopters and late adopters of Quality 4.0? An exploratory qualitative study. *TQM Journal*.

7. Barsalou, M. (2023). Root Cause Analysis in Quality 4.0: A Scoping Review of Current State and Perspectives. *TEM Journal*, *12*(1), 73-79.

- 8. Bousdekis, A., Lepenioti, K., Apostolou, D., Mentzas, G. (2023). Data analytics in quality 4.0: literature review and future research directions. *International Journal of Computer Integrated Manufacturing*, *36*(5), 678-701.
- 9. Escobar, C.A., Macias-Arregoyta, D., Morales-Menendez, R. (2023). The decay of Six Sigma and the rise of Quality 4.0 in manufacturing innovation. *Quality Engineering*.
- 10. Gajdzik B., Jaciow, M. Wolniak R., Wolny R., Grebski, W. (2024). Diagnosis of the development of energy cooperatives in Poland a case study of a renewable energy cooperative in the upper Silesian region. *Energies*, 17(3), 1-27.
- 11. Gajdzik, B., Bartuś, K, Jaciow, M., Wolniak, R., Wolny, R., Grebski, W.W. (2024). Evolution of Polish E-Consumers' Environmental Awareness and Purchasing Behavior over Ten Years. *Sustainability*, *16*(11), 4686.
- 12. Gajdzik, B., Jaciow, M., Wolniak, R. (2024). Gastronomic curiosity and consumer behavior: the impact of television culinary programs on choices of food services. *Foods*, 13(1), 1-16.
- 13. Gajdzik, B., Jaciow, M., Wolniak, R., Wolny R., Grebski, W.W. (2023). Energy Behaviors of Prosumers in Example of Polish Households. *Energies*, *16*(7), *3186*; https://doi.org/10.3390/en16073186.
- 14. Gajdzik, B., Siwiec, D., Wolniak, R., Pacana, A. (2024). Approaching open innovation in customization frameworks for product prototypes with emphasis on quality and life cycle assessment (QLCA). *Journal of Open Innovation: Technology, Market, and Complexity*, 10(2), 100268.
- 15. Gajdzik, B., Wolniak, R. (2021a). Digitalisation and innovation in the steel industry in Poland selected tools of ICT in an analysis of statistical data and a case study. *Energies*, *14*(*11*), 1-25.
- 16. Gajdzik, B., Wolniak, R. (2021b). Influence of the COVID-19 crisis on steel production in Poland compared to the financial crisis of 2009 and to boom periods in the market. *Resources*, *10*(1), 1-17.
- 17. Gajdzik, B., Wolniak, R. (2021c). Transitioning of steel producers to the steelworks 4.0 literature review with case studies. *Energies*, 14(14), 1-22.
- 18. Gajdzik, B., Wolniak, R. (2022). Smart Production Workers in Terms of Creativity and Innovation: The Implication for Open Innovation. *Journal of Open Innovations: Technology, Market and Complexity, 8(1),* 68.
- 19. Gajdzik, B., Wolniak, R. (2022a). Framework for R&D&I Activities in the Steel Industry in Popularizing the Idea of Industry 4.0. *Journal of Open Innovation: Technology, Market, and Complexity*, 8(3), 133.

- 20. Gajdzik, B., Wolniak, R. (2022b). Influence of Industry 4.0 Projects on Business Operations: literature and empirical pilot studies based on case studies in Poland. *Journal of Open Innovation: Technology, Market, and Complexity*, 8(1), 1-20.
- 21. Gajdzik, B., Wolniak, R. (2022c). Smart Production Workers in Terms of Creativity and Innovation: The Implication for Open Innovation. *Journal of Open Innovations: Technology, Market and Complexity,* 8(1), 68.
- 22. Gajdzik, B., Wolniak, R. Grebski, W. (2023a). Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry. *Energies*, *16*(8), *3384*, https://doi.org/10.3390/en16083384.
- 23. Gajdzik, B., Wolniak, R. Nagaj, R., Žuromskaitė-Nagaj, B., Grebski, W. (2024). The influence of the global energy crisis on energy efficiency: a comprehensive analysis. *Energies*, 17(4), 1-49.
- 24. Gajdzik, B., Wolniak, R., Grebski, W. (2023b). Electricity and heat demand in steel industry technological processes in Industry 4.0 conditions. *Energies*, *16*(2), 1-29.
- 25. Gajdzik, B., Wolniak, R., Grebski, W.(2022). An econometric model of the operation of the steel industry in Poland in the context of process heat and energy consumption. *Energies*, 15(21), 1-26.
- 26. Gajdzik, B., Wolniak, R., Grebski, W.W. (2024). Challenges of industrial systems in terms of the crucial role of humans in the Industry 5.0 environment. *Production Engineering Archives*, 30(1), 1-16.
- 27. Gajdzik, B., Wolniak, R., Nagaj, R., Grebski, W., Romanyshyn, T. (2023). Barriers to Renewable Energy Source (RES) Installations as Determinants of Energy Consumption in EU Countries. *Energies*, *16*(21), 7364.
- 28. Gębczyńska, A., Wolniak, R. (2018). *Process management level in local government*. Philadelphia: CreativeSpace.
- 29. Gimerská, V., Šoltés, M., Mirdala, R. (2023). Improving Operational Efficiency through Quality 4.0 Tool: Blockchain Implementation and Subsequent Market Reaction. *Quality Innovation Prosperity*, 27(2), 16-32.
- 30. Grabowska, S., Saniuk, S., Gajdzik, B. (2022). Industry 5.0: improving humanization and sustainability of Industry 4.0. *Scientometrics*, *127*(*6*), 3117-3144, https://doi.org/10.1007/s11192-022-04370-1.
- 31. Grabowska, S., Grebski, M., Grebski, W., Saniuk, S., Wolniak, R. (2021). *Inżynier w gospodarce 4.0.* Toruń: Towarzystwo Naukowe Organizacji i Kierownictwa Stowarzyszenie Wyższej Użyteczności "Dom Organizatora".
- 32. Grabowska, S., Grebski, M., Grebski, W., Wolniak, R. (2019). *Introduction to engineering concepts from a creativity and innovativeness perspective*. New York: KDP Publishing.
- 33. Hąbek, P., Wolniak, R. (2013). Analysis of approaches to CSR reporting in selected European Union countries. *International Journal of Economics and Research*, 4(6), 79-95.

34. Hąbek, P., Wolniak, R. (2016). Assessing the quality of corporate social responsibility reports: the case of reporting practices in selected European Union member states. *Quality & Quantity*, 50(1), 339-420.

- 35. Hąbek, P., Wolniak, R. (2016). Factors influencing the development of CSR reporting practices: experts' versus preparers' points of view. *Engineering Economy*, 26(5), 560-570.
- 36. Hąbek, P., Wolniak, R. (2016). Relationship between management practices and quality of CSR reports. *Procedia Social and Behavioral Sciences*, 220, 115-123.
- 37. Hys, K., Wolniak, R. (2018). Praktyki przedsiębiorstw przemysłu chemicznego w Polsce w zakresie CSR. *Przemysł Chemiczny*, *9*, 1000-1002.
- 38. Jokovic, Z., Jankovic, G., Jankovic, S., Supurovic, A., Majstorović, V. (2023). Quality 4.0 in Digital Manufacturing Example of Good Practice. *Quality Innovation Prosperity*, 27(2), 177-207.
- 39. Jonek-Kowalska, I., Wolniak, R. (2021). Economic opportunities for creating smart cities in Poland. Does wealth matter? *Cities*, *114*, 1-6.
- 40. Jonek-Kowalska, I., Wolniak, R. (2021a). Economic opportunities for creating smart cities in Poland. Does wealth matter? *Cities*, *114*, 1-6.
- 41. Jonek-Kowalska, I., Wolniak, R. (2021b). The influence of local economic conditions on start-ups and local open innovation system. *Journal of Open Innovations: Technology, Market and Complexity*, 7(2), 1-19.
- 42. Jonek-Kowalska, I., Wolniak, R. (2022). Sharing economies' initiatives in municipal authorities' perspective: research evidence from Poland in the context of smart cities' development. *Sustainability*, *14*(*4*), 1-23.
- 43. Jonek-Kowalska, I., Wolniak, R. (2023). *Towards sustainability and a better quality of life?* London: Routledge.
- 44. Khourshed, N., Gouhar, N. (2023). Developing a Systematic and Practical Road Map for Implementing Quality 4.0. *Quality Innovation Prosperity*, 27(2), 96-121.
- 45. Kordel, P., Wolniak, R. (2021). Technology entrepreneurship and the performance of enterprises in the conditions of Covid-19 pandemic: the fuzzy set analysis of waste to energy enterprises in Poland. *Energies*, 14(13), 1-22.
- 46. Kwiotkowska, A., Gajdzik, B., Wolniak, R., Vveinhardt, J., Gębczyńska, M. (2021). Leadership competencies in making Industry 4.0 effective: the case of Polish heat and power industry. *Energies*, *14*(*14*), 1-22.
- 47. Kwiotkowska, A., Wolniak, R., Gajdzik, B., Gębczyńska, M. (2022). Configurational paths of leadership competency shortages and 4.0 leadership effectiveness: an fs/QCA study. *Sustainability*, *14*(*5*), 1-21.
- 48. Liu, H.-C., Liu, R., Gu, X., Yang, M. (2023). From total quality management to Quality 4.0: A systematic literature review and future research agenda. *Frontiers of Engineering Management*, 10(2), 191-205.

- 49. Maganga, D.P., Taifa, I.W.R. (2023). Quality 4.0 conceptualisation: an emerging quality management concept for manufacturing industries. *TQM Journal*, *35*(2), 389-413.
- 50. Michalak, A., Wolniak, R. (2023). The innovativeness of the country and the renewables and non-renewables in the energy mix on the example of European Union. *Journal of Open Innovation: Technology, Market, and Complexity*, 9(2), https://doi.org/10.1016/j.joitmc. 2023.100061.
- 51. Nagaj, R., Gajdzik, B., Wolniak, R., Grebski, W. (2024). The impact of deep decarbonization policy on the level of greenhouse gas emissions in the European Union. *Energies*, 17(5), 1-23, 1245.
- 52. Olkiewicz, M., Olkiewicz, A., Wolniak, R., Wyszomirski, A. (2021). Effects of proecological investments on an example of the heating industry case study. *Energies*, 14(18), 1-24, 5959.
- 53. Olsen, C. (2023). Toward a Digital Sustainability Reporting Framework in Organizations in the Industry 5.0 Era: An Accounting Perspective. *Lecture Notes in Networks and Systems*, 557, 463-473.
- 54. Orzeł, B., Wolniak, R. (2021). Clusters of elements for quality assurance of health worker protection measures in times of COVID-19 pandemic. *Administrative Science*, 11(2), 1-14, 46.
- 55. Orzeł, B., Wolniak, R. (2022). Digitization in the design and construction industry remote work in the context of sustainability: a study from Poland. *Sustainability*, 14(3), 1-25.
- 56. Ponomarenko, T.V., Wolniak, R., Marinina, O.A. (2016). Corporate Social responsibility in coal industry (Practices of russian and european companies). *Journal of Mining Institute*, 222, 882-891.
- 57. Rosak-Szyrocka, J., Żywiołek J., Wolniak, R. (2023). Main reasons for religious tourism from a quantitative analysis to a model. *International Journal for Quality Research*, 1(17), 109-120.
- 58. Saihi, A., Awad, M., Ben-Daya, M. (2023). Quality 4.0: leveraging Industry 4.0 technologies to improve quality management practices a systematic review. *International Journal of Quality and Reliability Management*, 40(2), 628-650.
- 59. Salimbeni, S., Redchuk, A. (2023). Quality 4.0 and Smart Product Development. *Lecture Notes in Networks and Systems*, 614 LNNS, 581-592.
- 60. Singh, J., Ahuja, I.S., Singh, H., Singh, A. (2023). Application of Quality 4.0 (Q4.0) and Industrial Internet of Things (IIoT) in Agricultural Manufacturing Industry. *AgriEngineering*, *5*(1), 537-565.
- 61. Stawiarska, E., Szwajca, D., Matusek, M., Wolniak, R. (2020). *Wdrażanie rozwiązań przemysłu 4.0 w wybranych funkcjonalnych obszarach zarządzania przedsiębiorstw branży motoryzacyjnej: próba diagnozy.* Warszawa: CeDeWu.

62. Stawiarska, E., Szwajca, D., Matusek, M., Wolniak, R. (2021). Diagnosis of the maturity level of implementing Industry 4.0 solutions in selected functional areas of management of automotive companies in Poland. *Sustainability*, *13*(9), 1-38.

- 63. Stecuła, K., Wolniak, R. (2022). Advantages and Disadvantages of E-Learning Innovations during COVID-19 Pandemic in Higher Education in Poland. *Journal of Open Innovation: Technology, Market, and Complexity*, 8(3), 159.
- 64. Stecuła, K., Wolniak, R. (2022). Influence of COVID-19 Pandemic on Dissemination of Innovative E-Learning Tools in Higher Education in Poland. *Journal of Open Innovations: Technology, Market and Complexity, 8(1),* 89.
- 65. Sureshchandar, G.S. (2023). Quality 4.0 a measurement model using the confirmatory factor analysis (CFA) approach. *International Journal of Quality and Reliability Management*, 40(1), 280-303.
- 66. Wang, Y., Mo, D.Y., Ma, H.L. (2023). Perception of time in the online product customization process, *Industrial Management and Data Systems*, 123(2), pp. 369-385.
- 67. Wolniak, R., Skotnicka-Zasadzień, B. (2014). The use of value stream mapping to introduction of organizational innovation in industry. *Metalurgija*, *53*(4), 709-713.
- 68. Wolniak, R. (2011). Parametryzacja kryteriów oceny poziomu dojrzałości systemu zarządzania jakością. Gliwice: Wydawnictwo Politechniki Śląskiej.
- 69. Wolniak, R. (2013). Projakościowa typologia kultur organizacyjnych. *Przegląd Organizacji*, *3*, 13-17.
- 70. Wolniak, R. (2014). Korzyści doskonalenia systemów zarządzania jakością opartych o wymagania normy ISO 9001:2009. *Problemy Jakości*, *3*, 20-25.
- 71. Wolniak, R. (2016a). Kulturowe aspekty zarządzania jakością. *Etyka biznesu i zrównoważony rozwój. Interdyscyplinarne studia teoretyczno-empiryczne*, *1*, 109-122.
- 72. Wolniak, R. (2016b). *Metoda QFD w zarządzaniu jakością. Teoria i praktyka*. Gliwice: Wydawnictwo Politechniki Śląskiej.
- 73. Wolniak, R. (2016c). Relations between corporate social responsibility reporting and the concept of greenwashing. *Zeszyty Naukowe Politechniki Śląskiej. Seria Organizacji i Zarządzanie*, 87, 443-453.
- 74. Wolniak, R. (2016d). The role of QFD method in creating innovation. *Systemy Wspomagania Inżynierii Produkcji*, *3*, 127-134.
- 75. Wolniak, R. (2017a). Analiza relacji pomiędzy wskaźnikiem innowacyjności a nasyceniem kraju certyfikatami ISO 9001, ISO 14001 oraz ISO/TS 16949. *Kwartalnik Organizacja i Kierowanie*, 2, 139-150.
- 76. Wolniak, R. (2017b). Analiza wskaźników nasycenia certyfikatami ISO 9001, ISO 14001 oraz ISO/TS 16949 oraz zależności pomiędzy nimi. *Zeszyty Naukowe Politechniki Śląskiej. Seria Organizacji i Zarządzanie*, 108, 421-430.

- 77. Wolniak, R. (2017c). The Corporate Social Responsibility practices in mining sector in Spain and in Poland similarities and differences. *Zeszyty Naukowe Politechniki Śląskiej. Seria Organizacji i Zarządzanie*, 111, 111-120.
- 78. Wolniak, R. (2017d). The Design Thinking method and its stages. *Systemy Wspomagania Inżynierii Produkcji*, 6, 247-255.
- 79. Wolniak, R. (2021). Performance evaluation in ISO 9001:2015. Silesian University of Technology Scientific Papers. Organization and Management Series, 151, 725-734.
- 80. Wolniak, R. (2022a). Innovations in Industry 4.0 conditions. *Silesian University of Technology Scientific Papers. Organization and Management Series*, 169, 725-741.
- 81. Wolniak, R. (2022b). Functioning of real-time analytics in business. *Silesian University of Technology Scientific Papers. Organization and Management Series*, 172, 659-677.
- 82. Wolniak, R. (2023a). Deskryptywna analiza danych. Zarządzanie i Jakość, 5(2), 282-290.
- 83. Wolniak, R. (2023b). Smart biking w smart city. Zarządzanie i Jakość, 5(2), 313-328.
- 84. Wolniak, R. (2023c). Analiza w czasie rzeczywistym. Zarządzanie i Jakość, 5(2), 291-312.
- 85. Wolniak, R. (2023d). Smart mobility jako element koncepcji smart city. *Zarządzanie i Jakość*, *5*(2), 282-290.
- 86. Wolniak, R., Gajdzik, B., Grebski, M., Danel, R., Grebski, W.W. (2024). Business Models Used in Smart Cities—Theoretical Approach with Examples of Smart Cities. *Smart Cities*, 7(4), 1626-1669.
- 87. Wolniak, R., Jonek-Kowalska, I. (2021a). The level of the quality of life in the city and its monitoring. *Innovation (Abingdon)*, *34*(3), 376-398.
- 88. Wolniak, R., Jonek-Kowalska, I. (2021c). The quality of service to residents by public administration on the example of municipal offices in Poland. *Administration Management Public*, *37*, 132-150.
- 89. Wolniak, R., Jonek-Kowalska, I. (2022). The creative services sector in Polish cities. *Journal of Open Innovation: Technology, Market, and Complexity*, 8(1), 1-23.
- 90. Wolniak, R., Saniuk, S., Grabowska, S., Gajdzik, B. (2020). Identification of energy efficiency trends in the context of the development of industry 4.0 using the Polish steel sector as an example. *Energies*, *13*(*11*), 1-16.
- 91. Wolniak, R., Skotnicka, B. (2011).: *Metody i narzędzia zarządzania jakością Teoria i praktyka, cz. 1.* Gliwice: Wydawnictwo Naukowe Politechniki Śląskiej.
- 92. Wolniak, R., Skotnicka-Zasadzień, B. (2008). *Wybrane metody badania satysfakcji klienta i oceny dostawców w organizacjach*. Gliwice: Wydawnictwo Politechniki Śląskiej.
- 93. Wolniak, R., Skotnicka-Zasadzień, B. (2010). *Zarządzanie jakością dla inżynierów*. Gliwice: Wydawnictwo Politechniki Śląskiej.
- 94. Wolniak, R., Skotnicka-Zasadzień, B. (2018). Developing a model of factors influencing the quality of service for disabled customers in the condition s of sustainable development, illustrated by an example of the Silesian Voivodeship public administration. *Sustainability*, 7, 1-17.

95. Wolniak, R., Skotnicka-Zasadzień, B. (2022). Development of photovoltaic energy in EU countries as an alternative to fossil fuels. *Energies*, *15*(2), 1-23.

- 96. Wolniak, R., Skotnicka-Zasadzień, B. (2023). Development of Wind Energy in EU Countries as an Alternative Resource to Fossil Fuels in the Years 2016-2022. *Resources*, 12(8), 96.
- 97. Wolniak, R., Skotnicka-Zasadzień, B., Zasadzień, M. (2019). Problems of the functioning of e-administration in the Silesian region of Poland from the perspective of a person with disabilities. *Transylvanian Review of Public Administration*, *57E*, 137-155.
- 98. Wolniak, R., Stecuła, K. (2024). Artificial Intelligence in Smart Cities—Applications, Barriers, and Future Directions: A Review. *Smart Cities*, *7*(*3*), 1346-1389.
- 99. Wolniak, R., Sułkowski, M. (2015). Motywy wdrażanie certyfikowanych Systemów Zarządzania Jakością. *Problemy Jakości*, *9*, 4-9.
- 100. Wolniak, R., Sułkowski, M. (2016). The reasons for the implementation of quality management systems in organizations. *Zeszyty Naukowe Politechniki Śląskiej. Seria Organizacji i Zarządzanie*, 92, 443-455.
- 101. Wolniak, R., Wyszomirski, A., Olkiewicz, M., Olkiewicz, A. (2021). Environmental corporate social responsibility activities in heating industry case study. *Energies*, *14*(7), 1-19, 1930.
- 102. Yanamandra, R., Abidi, N., Srivastava, R., Kukunuru, S., Alzoubi, H.M. (2023). *Approaching Quality 4.0: The Digital Process Management as a Competitive Advantage*. 2nd International Conference on Business Analytics for Technology and Security, ICBATS 2023.