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Purpose: Electromyography (EMG) is a technique dealing with the recording and analysis of 11 

myoelectric signals formed by physiological variations in the muscle fiber membrane.  12 

The voltage potential of surface myoelectrical signals (sEMG) varies over time and depends on 13 

the characteristics of the individual subject. One of the main drawbacks of sEMG analysis is 14 

that the given acquisition conditions strongly determine the amplitude of the signal.  15 

The analysis of sEMG requires appropriate preprocessing, including proper filtering and artifact 16 

removal. Moreover, the sEMG data must be converted to a scale standardized for all 17 

measurements. This research aimed both to propose a method of sEMG processing to eliminate 18 

the occurring disturbances, in particular impulsive artifacts, and to determine the level of 19 

muscle excitation based on normalized sEMG. The analysis of muscle excitation level can be 20 

applied to assess muscle activity during physical activity. 21 

Design/methodology/approach: The proposed algorithm uses set of digital filters, 22 

probabilistic distribution and the decomposition of the sEMG signal to attenuate artifacts. 23 

Variance analysis of the sEMG derivative is used to determine muscle excitation. The sEMG 24 

signals were acquired with the VICON system with the sampling frequency set at 1000 Hz,  25 

and processed in MATLAB. During sEMG recordings, standard silver/silver chloride 26 

(Ag/AgCl) surface electrodes were used. 27 

Findings: The suggested technique was validated using sEMG recorded for eight persons 28 

during deep squat. Normalized excitation was determined for the left and right muscles,  29 

the rectus femoris, the vastus medialis, and the biceps femoris. Obtained outcomes indicate  30 

a possibility to assess the correctness of muscles condition. 31 

Originality/value: The combination of the proposed filter and the analysis variance-based 32 

thresholding method can effectively eliminate impulse artifacts within the surface myoelectrical 33 

signals. 34 
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1. Introduction 1 

Electromyography (EMG) is a technique that deals with, records, and analyzes 2 

myoelectrical signals formed by physiological variations in the state of sarcolemma –  3 

the muscle fiber membrane. The EMG signal is based upon action potentials that occur in the 4 

muscle fiber membrane as a consequence of depolarization and repolarization processes  5 

(De Luca, 1979). These rapid sequences of voltage changes in the sarcolemma induce the 6 

resulting excitation (electromechanical coupling) and finally cause a shortening of the 7 

contractile elements of the muscle cell manifested by muscle contraction (Konrad, 2005). 8 

Although excitation and contraction present a highly correlated relationship, it is known that 9 

weak excitation does not have to result in contractions (Konrad, 2005). The cell body, dendrites, 10 

and the motor neuron axon that innervates the bunch of muscle fibers is the smallest functional 11 

unit, so-called motor unit (motor neuron plus muscle fibers), of neural control of the muscular 12 

contraction process (Moritani et al., 2004; Staudenmann et al., 2010). The term unit is used 13 

because all muscle fibers within motor units behave and act as one in the innervation process. 14 

Methods used to measure these signals include surface EMG (sEMG), where electrodes are 15 

placed on the skin over the measured muscle, or intramuscular EMG (iEMG), where the 16 

electrodes are inserted through the skin into muscle tissue (Farina et al., 2016; Trontelj et al., 17 

2004). The sEMG signal is a superposition of individual motor unit action potentials (MUAPs) 18 

within the pick-up range of the surface electrodes (Rodríguez-Carreño et al., 2012). 19 

Recruitment of MUAPs and their firing frequency could be pointed out as the major control 20 

action to adjust contraction and modulate the force output of the involved muscle (Konrad, 21 

2005; Michell, 2013). Surface EMG is very attractive for researchers from various disciplines, 22 

such as medicine (Zwarts et al., 2004; Sadikoglu et al., 2017; Chmielewska et al., 2019; Jórasz 23 

et al., 2023; Wang et al., 2010; Martín et al., 2012; Merletti, Parker, 2004; Zieliński et al., 24 

2022a, 2022b; Yin et al., 2020; Xu et al., 2022; Pilkar et al., 2020), sport or rehabilitation 25 

(Merletti, Parker, 2004; Yin et al., 2020; Xu et al., 2022; Pilkar et al., 2020) mainly since its 26 

significant constituents, motor unit recruitment, and rate coding, are also the precursors of 27 

active force generation (Staudenmann et al., 2010; Farina et al., 2002, 2016; Vigotsky et al., 28 

2018). Muscle force production is preceded by excitation input from the central nervous system 29 

into the muscle. This signal triggers the excitation-contraction coupling, which leads to muscle 30 

activation (Dulhunty, 2006). Finally, muscle force is produced after cross-bridges are formed, 31 

and it is transmitted through the muscle (Zajac, 1989). With appropriate processing, sEMG can 32 

provide information on the timing and degree of muscle excitation and could be useful for 33 

providing insight into how the neuromuscular system behaves. 34 

Muscles are the motors or brakes of locomotion, but they act reflexively, guided by the 35 

commands of the central nervous system (CNS) (Konrad, 2005). Muscle activation expresses 36 

an active contribution to muscle force and does not take into account passive components. 37 
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Furthermore, activation versus force production is not affected by fiber length and velocity. 1 

Activation reflects the number of fibers that are active, not the force-generating capacity of 2 

those fibers (Vigotsky et al., 2018). Because sEMG measures changes in the polarity of muscle 3 

fiber sarcolemma resulting from neural excitation, it could be accepted that sEMG is a measure 4 

of muscle excitation but not a direct measure of activation. Excitation precedes muscle 5 

activation (Zajac, 1989), so the existing relationship is reflected in sEMG. An unfiltered and 6 

unprocessed signal detecting the superposed MUAPs is called a raw sEMG. Raw sEMG is 7 

mostly affected by motor unit recruitment and rate coding. The envelope of this signal may be 8 

regarded as the sum of MUAPs of the sarcolemma of the area of muscle over which the 9 

electrode is located. Since raw sEMG is a complex signal, its processing, for example filtering, 10 

could provide data that are referred to muscle excitation (Vigotsky et al., 2018) and can be used 11 

to detect muscle fatigue (Sarillee et al., 2014; Calderón et al., 2014; Sun et al., 2022). 12 

The aim of this paper is to propose a new approach to sEMG signal processing in order to 13 

eliminate the disturbances occurring in the surface electromyography signals (Chowdhury  14 

et al., 2013; de Luca et al., 2010), in particular, impulse artifacts and to determine the level of 15 

muscle excitation. The suggested method could enable an assessment of the muscle condition. 16 

The proposed approach focuses on determining the level of muscle activation in such a way as 17 

to eliminate the basic disadvantage of the standard method, in which the determined maximum 18 

excitation is usually based on the maximum or average value (Konrad, 2005) and can take into 19 

account the appearing impulse disturbances. 20 

The paper is organized as follows. In the section Materials and Methods the detailed 21 

description of algorithm for preprocessing sEMG signal, in particular attenuation of impulse 22 

artifacts, and method of determining muscle excitation are provided. In the section Results, 23 

based on real sEMG signals recorded for eight athletes during deep squat, the proposed methods 24 

are used to determine the excitation of the rectus femoris, vastus medialis, and biceps femoris. 25 

Next, the results obtained are compared to the results provided by the chosen classical method 26 

and simple statistical analysis is performed for both sets of results. Finally, the outcomes are 27 

discussed in section Discussion. 28 

2. Materials and Methods 29 

This section introduces the method of preprocessing the sEMG signal, finding the signal 30 

envelope and threshold value connected to the muscle excitation. The calculated threshold 31 

corresponds to the maximum excitation value of the muscle. The paper presents the operation 32 

of the proposed method and an example of the results of research carried out on eight athletes 33 

during deep squat activity. The average age of surveyed athletes was 25.86 years (range:  34 

23-29), and the average body max index (BMI) was 24.56 kg/m2 (range: 22.7-26.3).  35 
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Each athlete gave their written consent to participate in the study. The sEMG signals were 1 

acquired with the VICON system with the sampling frequency set at 1000 Hz, and processed 2 

in MATLAB (R2021a). During sEMG recordings, standard silver/silver chloride (Ag/AgCl) 3 

surface electrodes were used. The electrodes had a Ag/AgCl disk with a diameter of about  4 

7 mm. Therefore, the conductive surface was about 38 mm2. The skin was rubbed with a mild 5 

abrasive to improve electrode-skin contact. The electrodes were placed according to SENIAM 6 

(Surface Electromyography for the Non-Invasive Assessment of Muscles) recommendations 7 

(Stegeman, Hermens, 2007). The SENIAM project is a European concerted action in the 8 

Biomedical Health and Research Program (BIOMED II) of the European Union. The SENIAM 9 

project developed important guidelines for EMG measurements that include, in particular, 10 

information on the characteristic and position of the electrodes (Hermens et al., 1999; Freriks, 11 

Hermens, 1999). All sessions with the recording of the sEMG signal took place in the first half 12 

of the day. 13 

In our tests, participants (athletes) were asked to generate a maximum voluntary contraction 14 

for about 5 seconds, and this activity was repeated two times. The other exercises (deep squats) 15 

studied in this work were repeated twice in each trial. A kurtosis value calculated in the moving 16 

window was used to represent the quality of muscle excitation. For further analysis, the intervals 17 

of sEMG with kurtosis closer to 3 were taken to estimate MVC activity level (determined for 18 

selected muscle). The MVC-related activity was used for the normalization process performed 19 

for the sEMG signals recorded during deep squat exercises. Normalization was performed by 20 

dividing determined muscle excitation by the MVC value. 21 

2.1. Surface EMG processing pipeline 22 

The proposed method of sEMG processing consists of two main steps, that is, filtering and 23 

envelope calculation with threshold process. The sEMG processing pipeline is shown  24 

in Figure 1. 25 

 26 

Figure 1. The block diagram with two main steps of the proposed sEMG processing method. The first: 27 
filtering with a set of dedicated digital filters, and the second: envelope calculation and threshold 28 
process. 29 
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This is due to the fact that the sEMG signal is weak and can present a lot of artifacts (Konrad, 1 

2005; Reaz et al., 2006), the analysis of sEMG requires appropriate preprocessing, which 2 

includes proper filtering and artifact removal methods (Qiu et al., 2015; Yeon, Herr, 2021; 3 

Boyer et al., 2023). The sEMG signal is usually smoothed by a method based on the root mean 4 

square (RMS) calculation (Burden et al., 2014; Arabadzhiev et al., 2010; Gupta et al., 2017; 5 

Rose, 2014; Karabulut et al., 2017; Arozi et al., 2020; Josephson, Knight, 2019). RMS reflects 6 

the mean power of the signal (Luca, 1997). During the preprocessing stage, the EMG signal 7 

was filtering by three types of digital finite impulse response filters (FIR): the high pass filter 8 

(HPF) with a cutoff frequency set to 10 Hz (Stegeman, Hermens, 2007), the low pass filter 9 

(LPF) with a cutoff frequency set to 250 Hz, and the band stop filter (BSF) to suppress the 10 

mains interference (50 Hz). A moving average (Smith, 1997-1998; Kabe, Sako, 2020) hole 11 

filter (MAHF) slid a window of 2WL length (WL = 40 ms) along the sEMG data. The seven-12 

bin histogram of the sEMG data contained in the window: X = {x[n], x[n − 1], ... x[n − (2WL 13 

− 1)]} was calculated. Then the vector D of the sEMG samples d[i], for i ∈ {k, k − 1...,  14 

(K − 1)}, where K < 2WL, belonging to the three most numerous bins, was created. The mean 15 

value of D is the output of the filter. The principle of the operation of MAHF is presented in 16 

Figure 2. 17 

 18 

Figure 2. The principle of the operation of MAHF. The seven-bin histogram of the sEMG data contained 19 
in the window (X = {x[n], x[n − 1], ... x[n − (2WL − 1)]}) of 2WL length is calculated. Next, the vector 20 
D of sEMG samples d[i], for i ∈ {k, k – 1 ..., (K − 1)}, where K < 2WL, belonging to the three most 21 
numerous bins, is created. The mean value of D is the output of the filter. 22 
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Next, the signals were processed using an RMS window length of 150 ms (Burden et al., 1 

2014). The kurtosis parameter was used to assess the influence of the proposed filtering method 2 

on sEMG signal. Next, by determining the threshold value of the sEMG signal, the level of 3 

muscle excitation was determined. 4 

2.2. Kurtosis 5 

According to the literature (Michell, 2013), more motor unit action potentials are fired with 6 

increasing the force level during contraction. Because the sEMG signal is the superposition of 7 

these potentials, it tends to be a Gaussian process at high force levels (Nazarpour et al., 2005, 8 

2013). In this research, kurtosis was used to evaluate the Gaussianity of sEMG signals.  9 

Kurtosis (1) is a classic method of measuring non-Gaussianity (Hyvärinen, Oja, 2000).  10 

It is a measure of the sensitivity of the distribution to outliers. In classic terms, kurtosis is 11 

expressed by (1) (Hyvärinen and Oja, 2000): 12 

 𝑘𝑢𝑟𝑡(𝑠) = 𝐸{𝑠4} − 3(𝐸{𝑠2})2, (1) 13 

where s is a signal and E{s} is expected value of the signal s. In our study to calculate the 14 

kurtosis of a discrete sEMG signal, the following formula (2) is used: 15 

 𝑘𝑢𝑟𝑡(𝑠) =
1

𝑁
∑ (𝑥𝑖−𝜇)

4𝑁
𝑖=1

(
1

𝑁
∑ (𝑥𝑖−𝜇)

2𝑁
𝑖=1 )

2, (2) 16 

where μ is the mean of the discrete signal s = [x1, x2, ..., xN] and N is the number of signal 17 

samples. Kurtosis for the Gaussian random variable (s) calculated according to the formula (2) 18 

is equal to 3. 19 

2.3. Thresholding 20 

Threshold calculation is performed on sEMG intervals presenting muscle excitation split 21 

into 100 ms segments. In the first step, the level of artifacts is found. To gain insight into the 22 

rate of amplitude changes, for each segment, the first derivative is calculated, and the variance 23 

of the derivative is determined (variance is the measure of dispersion). Then, the mean (MD) 24 

and standard deviation values (STDD) of variance from the segments of derivatives are 25 

calculated by (3) and (4), respectively. 26 

 𝑀𝐷 =
1

𝑁
∑ 𝑣𝑖
𝑁
𝑖=1 , (3) 27 

 𝑆𝑇𝐷𝐷 = √∑
(𝑣𝑖−𝑀𝐷)2

𝑁
𝑁
𝑖=1 , (4) 28 

where vi denotes the variance of derivatives of i-th segments of sEMG signal for all (N) sEMG 29 

segments under consideration. The threshold level for detecting artifacts (TAL) is determined 30 

using the following formula: 31 

 𝑇𝐴𝐿 = 𝑀𝐷 + 𝑠𝑙 ⋅ 𝑆𝑇𝐷𝐷, (5) 32 

where MD (3) and STDD (4) are the mean and standard deviation (Kabe and Sako, 2020) of 33 

variance from the segments of derivatives, respectively, and sl is a constant that determines the 34 
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sensitivity of artifacts detection. In our case, it was set to 0.95. In the second step, the variance 1 

value of each segment is compared with TAL. If the variance of the first derivative of a given 2 

segment exceeds the TAL value, the analyzed segment of the sEMG signal is marked as noisy. 3 

Next, the maximum amplitude of the sEMG signal is determined (MA) according to: 4 

 𝐴(𝑥(𝑛)) = 𝑚𝑎𝑥
𝑖∈{1,2,…𝐾}

𝑥(𝑖), (6) 5 

where x(n) is discrete sEMG signal and K denotes the length of analyzed sEMG (not noisy 6 

marked). 7 

Segments marked as noisy are omitted when determining the maximum amplitude.  8 

Then, samples of the sEMG signal exceeding the maximum are dropped. The maximum value 9 

and time location are searched in the sEMG signal prepared in this way. In the last step,  10 

a 2D (D = 50 ms) length window was created relative to the determined position. The threshold 11 

value was defined as the mean of the sEMG signal in the assumed window and refers to the 12 

level of muscle excitation. The illustration of the threshold operation is shown in Figure 3. 13 

 14 

Figure 3. Illustration of the threshold operation; analyzed fragment of sMEG (red), noised segment 15 
(black), MA (horizontal red dashed line), spikes excluded from threshold analysis (blue) (a); sEMG after 16 
removing spikes (blue), MA (horizontal red line), level of muscle excitation determined (horizontal 17 
black line), 2D (100 ms) length window (vertical green dashed lines) for determining level of muscle 18 
excitation (b). 19 

3. Results 20 

The operation of the proposed method is illustrated in Figures 4-7. An example of a raw 21 

sEMG signal recorded for the normalization process (MVC estimation) of the left rectus 22 

femoris muscle during two repetitions is depicted in Figure 4. 23 
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 1 

Figure 4. An example of raw sEMG signal recorded for normalization process from left rectus femoris 2 
muscle during two repetitions.  3 

Figure 5 shows the filtered (by HPF, LPF and BSF), rectified samples of raw sEMG versus 4 

the sEMG signal processed by the proposed method. 5 

 6 

Figure 5. An example of the absolute value of filtered (by HPF, LPF and BSF) rectified sEMG signal 7 
(green) and sEMG after filtering by MAH filter (blue). 8 

Figure 6 shows the comparison of the RMS values of the sEMG signal obtained by the 9 

standard and proposed method. 10 

 11 

Figure 6. Comparison of RMS values of sEMG obtained by classic (red line) and proposed method 12 
(blue line). 13 

Figure 7 presents both the calculated MVC level by the proposed method and the maximum 14 

value of the sEMG amplitude. Figure 8 shows the RMS values of the sEMG signal for 15 

normalization and the calculated MVC levels obtained by the classic and proposed method in 16 

the second repetition, while Figure 9 shows the RMS values of sEMG signal and the determined 17 

level of vastus medialis excitation in the deep squat calculated by the classic and proposed 18 

method. 19 

  20 
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Kurtosis of the sEMG fragment was estimated for each repetition before and after 1 

preprocessing to determine the MVC level. For the first repetition of the normalization exercise, 2 

kurtosis was equal to 4.16 and 3.30, before and after preprocessing, respectively, and 5.59 and 3 

2.92 for the second repetition. As the sEMG signal distribution for the MVC estimation should 4 

tend to a normal distribution, the second repetition after preprocessing with kurtosis equal to 5 

2.92 was taken into further analysis. 6 

 7 

Figure 7. Determination of MVC level. The maximum amplitude of the sEMG signal is marked by  8 
a *sign and a line in magenta color, and a red line marks the MVC level determined by the proposed 9 
method. The sampling frequency is equal to 1000 Hz. 10 

 11 

Figure 8. Example of MVC determination levels for RMS obtained by the classic (a) and proposed 12 
method (b) for left (blue line) and right (red line) vastus medialis. A horizontal line marks the MVC for 13 
the second repetition in green for the left muscle and black for the right muscle. Additionally,  14 
the corresponding values of measured force are presented (c). 15 
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 1 

Figure 9. Example of determined levels of vastus medialis excitation in deep squat calculated for RMS 2 
obtained by classic (a) and the proposed method (b) for left (blue line) and right (red line) vastus 3 
medialis. A horizontal line marks the MVC for the second repetition in green for the left muscle and in 4 
black for the right muscle. 5 

The results of maximum excitation expressed in %MVC for the left and right rectus femoris, 6 

vastus medialis, and biceps femoris muscles for the classic and proposed method during deep 7 

squat activity are summarized in tables 1-2 and 3-4, respectively. Based on analyzed sEMG 8 

signals and level of muscle excitation, the outcomes obtained were divided into two groups. 9 

The main factor that suggested the division into groups was the difference in the level of 10 

excitation in the biceps femoris. Tables 1, 3 and 2, 4 show the results for groups 1 and 2 for 11 

both the classic and proposed methods. 12 

In addition, the excitation levels of the rectus femoris, vastus medialis, and biceps femoris 13 

for each group and each person (for the left and right muscle separately) are illustrated in 14 

Figures 10-11 (classic method) and 12-13 (proposed method). 15 

Table 1. 16 
The results (classic method) of maximum excitation in %MVC for left and right rectus 17 

femoris, vastus medialis and biceps femoris muscle during deep squat activity for group 1 18 

Person Muscle 
Rectus 

Femoris 

%MVC 

Vastus 

Medialis 

%MVC 

Biceps 

Femoris 

%MVC 

1 
Left 62 58 10 

Right 79 65 5 

2 
Left 68 29 3 

Right 49 30 3 

3 
Left 85 76 16 

Right 124 42 11 

4 
Left 21 49 11 

Right 34 59 12 

 19 

  20 
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Table 2. 1 
The results (classic method) of maximum excitation in %MVC for left and right rectus 2 

femoris, vastus medialis and biceps femoris muscle during deep squat activity for group 2 3 

Person Muscle 
Rectus 

Femoris 

%MVC 

Vastus 

Medialis 

%MVC 

Biceps 

Femoris 

%MVC 

5 
Left 15 66 31 

Right 31 50 8 

6 
Left 54 68 3 

Right 63 109 25 

7 
Left 63 45 62 

Right 51 85 12 

8 
Left 12 38 75 

Right 59 37 24 

 4 

 5 

Figure 10. The results (classic method) of maximum excitation expressed in %MVC for left and right 6 
rectus femoris (blue bar), vastus medialis (red bar) and biceps femoris (gray bar) muscle during deep 7 
squat activity for group 1. 8 

 9 

Figure 11 The results (classic method) of maximum excitation expressed in %MVC for left and right 10 
rectus femoris (blue bar), vastus medialis (red bar) and biceps femoris (gray bar) muscle during deep 11 
squat activity for group 2. 12 

Table 3. 13 
The results (proposed method) of maximum excitation in %MVC for left and right rectus 14 

femoris, vastus medialis and biceps femoris muscle during deep squat activity for group 1 15 

Person Muscle 
Rectus 

Femoris 

%MVC 

Vastus 

Medialis 

%MVC 

Biceps 

Femoris 

%MVC 

1 
Left 48 51 7 

Right 37 51 5 

2 
Left 77 34 2 

Right 38 40 3 

3 
Left 92 93 12 

Right 126 45 14 

4 
Left 23 47 13 

Right 29 58 9 
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Table 4. 1 
The results (proposed method) of maximum excitation in %MVC for left and right rectus 2 

femoris, vastus medialis and biceps femoris muscle during deep squat activity for group 2 3 

Person Muscle 
Rectus 

Femoris 

%MVC 

Vastus 

Medialis 

%MVC 

Biceps 

Femoris 

%MVC 

5 
Left 13 67 15 

Right 26 32 4 

6 
Left 69 58 3 

Right 57 86 21 

7 
Left 60 55 66 

Right 32 64 11 

8 
Left 14 69 77 

Right 30 41 17 

 4 

 5 

Figure 12. The results (proposed method) of maximum excitation expressed in %MVC for left and right 6 
rectus femoris (blue bar), vastus medialis (red bar) and biceps femoris (gray bar) muscle during deep 7 
squat activity for group 1. 8 

 9 

Figure 13. The results (proposed method) of maximum excitation expressed in %MVC for left and right 10 
rectus femoris (blue bar), vastus medialis (red bar) and biceps femoris (gray bar) muscle during deep 11 
squat activity for group 2. 12 

3.1. Statistical Analysis 13 

In the first step of the statistical analysis, the consistency of the results obtained by the 14 

methods considered: classic and proposed was validated. The normal distribution of data  15 

(for whole data and separately for data obtained with the classic and proposed method) were 16 

tested by the Lilliefors-Corrected Kolmogorov-Smirnov test because of the not known expected 17 

value and variance for the whole population. In general, the data examined were not normal 18 

distributed (for the rectus femoris, vastus medialis p > 0.2 and biceps femoris p < 0.05), 19 

therefore the nonparametric (independent of the distribution of random variable)  20 

Mann-Whitney U test was performed. Based on the non-parametric Mann-Whitney U test,  21 

it was shown that the null hypothesis that randomly selected samples came from populations 22 



A new approach to preprocessing of EMG signal 229 

with equal medians could not be rejected (p =0.44 for rectus femoris, p = 0.87 for vastus 1 

medialis, and p = 0.79 for biceps femoris), which would indicate the consistency of the results 2 

obtained for individual methods. Analyzing the box plots (Figure 14) of muscles excitation 3 

during deep squat for the classic and the proposed method, it could be noticed a decrease in the 4 

dispersion of excitation values for vastus medialis in the case of the proposed method. 5 

 6 

Figure 14. Box plots of rectus femoris, vastus medialis and biceps femoris muscles excitation levels for 7 
classic and proposed methods. 8 

Box plots in Figure 15 show the relationship between the excitation of individual muscles 9 

in groups 1 and 2, depending on the method used. 10 

 11 

Figure 15. Box plots of rectus femoris, vastus medialis, and biceps femoris muscles excitation levels 12 
obtained for the classic (in the top) and the proposed (in the bottom) methods. Results for groups 1 and 13 
2 are presented on the left and right columns, respectively. 14 

  15 
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4. Discussion 1 

The presented work proposes an sEMG signal processing method to determine the value of 2 

muscle excitation, which relates to muscle contraction. The described method can be used to 3 

assess motor control strategy, that is, muscles contribution to particular physical activity.  4 

The main motivation for proposing this method of sEMG signal processing was the need to 5 

eliminate impulse interference (narrow spikes) from the sEMG signal. The common cause of 6 

these artifacts is both the EMG signal’s nature and its recording technique (e.g., use of surface 7 

electrodes, recording during movements) (Qiu et al., 2015; Boyer et al., 2023). Narrow spikes 8 

appearing in the sEMG signal might significantly influence the correctness of the classic 9 

method of estimating muscle excitation, mainly because these disturbances are often of great 10 

amplitude and interfere with the maximum value of amplitude taken into account in the classic 11 

method (Konrad, 2005; Josephson, Knight, 2019). 12 

The healthy relaxed muscle produces no significant excitation due to the lack of 13 

depolarization and repolarization of the sarcolemma of muscle fiber, that is, the lack of action 14 

potentials. Appearing action potentials recorded in a raw sEMG are randomly shaped spikes 15 

because the actual set of recruited motor units is constantly changing (Cavalcanti Garcia, Vieira, 16 

2011), so they also change their diameters and distances from the electrodes. Suppose some 17 

motor units in the close neighborhood are recruited at the same time. In that case, the generated 18 

action potentials superimpose, and if the motor units are additionally located near the electrode, 19 

a significant spike may be observed in the raw sEMG (Roeleveld et al., 2003). 20 

The reason is that the sEMG signal is usually recorded during physical activity, which 21 

results, for example, in the problem of ensuring proper electrode-skin contact (Yeon, Herr, 22 

2021). Temporary loss of electrode contact may also cause disturbances (Olmo, Domingo, 23 

2020), which, if not eliminated, may significantly affect the determination of some parameters 24 

of the sEMG signal (e.g., the value of maximum excitation, which reflects maximum muscle 25 

contraction). The proposed algorithm attenuates disturbances both at the stage of sEMG signal 26 

preprocessing and at the stage of determining the maximum value of muscle excitation 27 

(thresholding). The exemplary outcomes of the proposed sEMG signal processing method, 28 

presented in the results section, show the effectiveness of eliminating impulse interference  29 

at the filtering stage and during determining the level of muscle excitation. 30 

It can be noticed that the presented method affects the amplitude of the processed sEMG 31 

signal compared to the classic method. However, it does not affect the calculated normalized 32 

muscle excitation level as long as the normalization process (Chalard et al., 2020; Halaki, Ginn, 33 

2012) is correct and the normalized and normalizing signals are processed using the same 34 

(proposed) method. The comparison of kurtosis for raw signals and signals processed with the 35 

proposed method shows that the method minimizes too aggressive filtering of the sEMG signal. 36 

In the case of the analyzed fragments of sEMG signals in the interval where MVC was 37 
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determined, the post-filtering signal distribution was close to normal, with kurtosis of about 1 

three. 2 

Performed statistical analysis did not point out the significant differences between the 3 

outcomes obtained by the classic and proposed method in terms of maximal excitation of the 4 

rectus femoris, vastus medialis, and biceps femoris muscles in the deep squat. Both methods 5 

give consistent results, especially for good-quality sEMG signals. The problem arises when the 6 

impulse interference appears in the sEMG recording and has not been eliminated by the RMS 7 

method, which can be observed in Figure 8, in such cases, the proposed method gives better 8 

results (Figure 14 (for vastus medialis)), and the estimated maximum excitation seems to be 9 

closer to that of physiological origin. 10 

According to the assessment of physiotherapists, the main active muscles in the deep squat 11 

are the rectus femoris and the vastus medialis, while the biceps femoris was rated as weakly 12 

active or even inactive in this exercise. Analysis of the muscle excitation values for the deep 13 

squat using both the classic and proposed methods allowed to distinguish two groups of athletes 14 

depending on the excitation of the biceps femoris muscle.  15 

For group 1 the excitation of the biceps femoris does not exceed 16%MVC (mean = 8.70, 16 

std = 4.58, stderror = 1.62) in the classic method and 14%MVC (mean = 8.20, std = 4.61, 17 

stderror = 1.63) in the proposed method, therefore, the excitation of the biceps femoris is low 18 

enough to confirm the suggestion of the physiotherapists that in the deep squat the excitation 19 

of the biceps femoris is at a low level with the dominant excitation of the vastus medialis and 20 

rectus femoris. The results obtained (Figures 10, 12) show that this tendency is maintained for 21 

both the left and right muscles. 22 

In the case of group 2, both methods indicate a decrease in the rectus femoris excitation by 23 

an average of approximately 21%MVC compared to group 1, while increasing biceps femoris 24 

excitation by more than 21.46%MVC (compared to group 1) in the classic method and 25 

18.51%MVC in the proposed method. For the vastus medialis, the classic method showed  26 

a decrease in excitation of about 11.14%MVC in relation to group 1, while the proposed method 27 

showed an increase in excitation of about 14.56%MVC. The observed effect of activation of 28 

the biceps femoris muscle may result from a limited range of motion in the ankle joint or too 29 

little flexibility of the posterior muscle band. Activation of the antagonist’s muscle may indicate 30 

that the person performing the exercise was trying to compensate, for example, for the tendency 31 

to valgus the knee resulting from the above limitations. Differences in the assessment of the 32 

excitation of the vastus medialis muscle using the classic method and the proposed method 33 

probably result from artifacts disturbing the maximum value of the amplitude in the sEMG 34 

signals (Figures 9, 14 (for the vastus medialis)). 35 

Correctly evaluating individual muscle excitation for a given exercise can provide a deeper 36 

insight into how the muscles work during this exercise and can also be used to assess progress 37 

during training or rehabilitation. The emerging disproportion in muscle excitation can be both 38 

a remnant of a past injury and a harbinger of an injury in the future. In the future, enlarging 39 
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group 1 with a larger number of athletes, for whom the muscles excitation (active muscles: 1 

rectus femoris and vastus medialis) would be assessed by both the classic and proposed method, 2 

could allow for definite the ranges of excitation for considered muscles in the case of a properly 3 

performed exercise. The excitation ranges obtained could be the reference values for assessing 4 

any athlete’s muscle condition in the deep squat. The limitation and disadvantage of the 5 

proposed method may be that in some cases, due to the nature of the sEMG or EMG signal, 6 

which is random and non-stationary, part of the signal may be treated as an impulse disturbance. 7 

Therefore, the proposed method should not be used during studies concerned with the analysis 8 

of single muscle fiber excitation, which may be in the form of short pulses of high amplitude, 9 

is important. Also, depending on the sEMG signal recording parameters, for example, the value 10 

of sampling frequency, some parameters of the proposed method, such as the number of 11 

histogram bins used in the proposed FMAH filter, may need to be changed. 12 

5. Conclusions 13 

The determination of proper muscle excitation requires preprocessing and normalization of 14 

the sEMG signal. The selection of the normalizing exercise, as well as the careful execution of 15 

this exercise, are of great importance for the normalization process and muscle excitation 16 

estimation. The proposed approach for sEMG analysis provides an effective method for 17 

assessing muscle excitation during sports activity. The combination of the MAHF filter and the 18 

analysis variance-based thresholding method can effectively eliminate impulse artifacts (pulse 19 

with high amplitude, e.g., caused by electrode contact variation) within the sEMG signals, 20 

which makes the determined level of muscle excitation more reliable. The results of preliminary 21 

studies are promising because they seem to be closer to that of physiological origin and 22 

consistent with the suggestions of physiotherapists. The proposed method was also developed 23 

to reduce computational complexity and to be easily applied to online sEMG analysis. 24 
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