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Purpose: The article aims to build a mathematical model of a bike-sharing station based on  9 

an appropriate queueing system and show the model's usefulness in practice. 10 

Design/methodology/approach: In designing the model, constructing a queueing system 11 

described by exponential distributions with a finite accumulating buffer was used.  12 

The existence of the steady state of the system and the global balance principle were used to 13 

obtain analytical results.  14 

Findings: The most important analytical results are the stationary probability distribution of 15 

the number of rented bikes, the so-called loss probability (the probability that the customer has 16 

to resign from sharing due to the lack of bikes), as well as the average (mean) values of the 17 

number of rented bikes. 18 

Originality/value: The paper fits into the broadly understood trend of research related to the 19 

smart city concept. The proposed model may be beneficial in practice when designing specific 20 

solutions related to the development of bicycle rental stations. 21 
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Category of the paper: Research paper. 23 

1. Introduction 24 

The concept of smart cities requires an in-depth analysis of the market and consumer needs. 25 

This, of course, involves proposing appropriate communication solutions, including bicycle 26 

rental stations. Analytical models in this area can, therefore be actively used in practice.  27 

The use of queueing models in practical modeling is common today and is constantly gaining 28 

in importance (see, e.g., Bose, 2002; Ng, Soong, 2008; Chan, 2014; Shortle et al., 2018 and 29 

Lakatos et al., 2019). Queueing systems are used to design network protocols and solve logistics 30 

and transport issues (including communication nodes and traffic control systems).  31 
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An overview of the results regarding the modeling of bicycle rental stations can be found 1 

in (Fishman, 2016). In (Ashqar et al., 2017; Yang et al., 2018), artificial intelligence algorithms, 2 

particularly deep machine learning, were used to analyze the functioning of bicycle rental 3 

stations. The article (Wang et al., 2015) considered the influence of the location of a bicycle 4 

rental station on its operational characteristics. An optimization approach to this issue was 5 

proposed in (Qian et al., 2022). 6 

The paper proposes a queueing model describing renting and returning bicycles from a bike-7 

sharing station. This model is based on exponential distributions describing the process of 8 

incoming customers (who want to rent a bike) and servicing them (understood here as the time 9 

of using the rented bike). The maximum system size corresponds to the number of service 10 

stations in an appropriately chosen queueing model. Indeed, by a single service station, we can 11 

mean a single bicycle in use. Occupying all service stations, therefore means renting all 12 

available bicycles. This number is equal to the maximum number of customers in the system 13 

(in the model, we assume that when the bike-sharing station is empty, the potential customer 14 

does not wait for a bike but resigns from the station's services).  15 

For the stationary state of the system, after its stabilization, analytical results are presented 16 

for the distribution of the number of customers, understood here as the number of rented 17 

bicycles. In particular, a representation for the so-called loss probability, i.e., the probability 18 

that all bicycles are rented, is given, as well as the formula for the average (mean) value of the 19 

number of rented bicycles. 20 

2. Model description 21 

In the article, we analyze a mathematical model of a single bike-sharing station described 22 

by means of a finite-capacity queueing system with Poisson arrivals of customers with a given 23 

rate 𝑎. The Poisson arrival stream describes potential customers of the station who would like 24 

to rent a bike. In practice, the arrival rate changes in time: its values can differ in different 25 

periods. A typical engineering approach in such a situation is to divide the observation period 26 

into a finite number of subperiods in which the intensity of arrivals can be accepted to be 27 

constant. The service process reflects the process of using the rented bike: we assume that 28 

successive processing times are independent and identically distributed random variables with 29 

the mean 𝑏−1. The station “capacity” equals 𝑚 ≥ 1, i.e., we have 𝑚 bikes that can be rented. 30 

If a customer occurs when there are no bikes available for rent, he leaves the station without 31 

service (in the “language” of queueing theory, we say that such a customer is “lost”).  32 

Thus, using the classical Kendall notation, the considered queueing model can be classified as 33 

the M/M/m/m-type system (a kind of system with customer losses without a waiting room). 34 



Towards a smart city… 211 

Critical from the point of view of ensuring the appropriate quality of customer service (QoS) 1 

is constant monitoring of the number of bicycles available for rent. Thanks to this, it is possible 2 

to optimally use the station - avoiding a situation in which no bikes are available for rent for  3 

a long time during the day, or a small number of them is rented compared to the total number 4 

of bikes offered. When describing the model probabilistically using an appropriate queueing 5 

system, we are interested in the probability distribution of the number of bicycles available at 6 

the station, and the probability that an arriving customer will find the station empty (no bicycles 7 

to rent) will be significant for us. We will consider the model in the steady state, i.e. at 𝑡 → ∞. 8 

Of course, because the system contains a finite buffer, regardless of the intensity of customer 9 

input and the speed of their service, the steady state exists (see e.g. Adan, Resing, 2015; Tijms, 10 

2003; Heyman, Sobel, 1982 for basics of stochastic modeling in this area).  11 

3. Analytical results 12 

Let us introduce the following notation: 13 

 𝑞𝑛 ≝ 𝑃{𝑋 = 𝑛},  (1) 14 

where 𝑋 stands for the number of rented bikes, 𝑛 ∈ {0, 1, … , 𝑚}. Obviously, the following 15 

normalization condition is satisfied: 16 

 ∑ 𝑞𝑛 = 1.𝑚
𝑛=0   (2) 17 

The global balance principle (see e.g., Adan, Resing, 2015), which can be applied to any 18 

steady-state queueing model, states that the output flow of customers from a given state is equal 19 

to the input flow to the state. Note that the output stream of customers to state 0 (0 bikes rented, 20 

all bikes available) is equal to the product of the intensity of customers coming to the service 21 

station and the probability 𝑞0 that the system is in state 0. In other words, the fraction 𝑎𝑞0 of 22 

the input stream corresponds to the transition from state 0 to state 1. Similarly, the input stream 23 

to state 0 "comes" from state 1 and amounts to 𝑏𝑞1, where 𝑏 is the intensity of customer service 24 

(in our bike-sharing station model, it corresponds to the intensity of returning rented bicycles). 25 

Similarly, the fraction 𝑏𝑞1 of the total stream describing the intensity of customer service per 26 

time unit corresponds to the transition from state 0 to state 1. Comparing both streams to each 27 

other, we obtain the equation 28 

 𝑎𝑞0 = 𝑏𝑞1.  (3) 29 

Now consider state 1. The customer output stream from this corresponds to a transition from 30 

state 1 to state 2 (customer influence), but also to a transition from state 1 to state 0 (customer 31 

service). Therefore it is equal to 𝑎𝑞1 + 𝑏𝑞1 = (𝑎 + 𝑏)𝑞1. In turn, the input stream to state 1 is 32 

related to the arrival of the customer to the "empty" system (𝑎𝑞0) or with the end of customer 33 

service in a system that was in state 2 (2𝑏𝑞2), it is then equal to 𝑎𝑞1 + 2𝑏𝑞2. The quantity 2𝑏 34 

is related to the fact that in the considered queueing model "being" in state 2, the intensity of 35 
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"customer service" is 2𝑏 – each customer who rented a bike returns it with intensity 𝑏 (merging 1 

property of Poisson process describing the service in the considered model). Equating both 2 

streams to each other, we obtain the equation 3 

 (𝑎 + 𝑏)𝑞1 = 𝑎𝑞0 + 2𝑏𝑞2.  (4) 4 

For state 2, in consequence, we obtain an analogous equation, applying the global balance 5 

principle 6 

 (𝑎 + 𝑏)𝑞2 = 𝑎𝑞1 + 3𝑏𝑞3.  (5) 7 

In general, for state 𝑛, where 𝑛 ∈ {1, … , 𝑚 − 1}, we have the following equation: 8 

 (𝑎 + 𝑏)𝑞𝑛 = 𝑎𝑞𝑛−1 + 𝑛𝑏𝑞𝑛.  (6) 9 

A specific situation occurs for state 𝑚, corresponding to the situation in which all available 10 

bicycles have been rented. It is no longer possible to move from this state to a higher state so 11 

that the appropriate equilibrium equation will be 12 

 𝑎𝑞𝑚−1 = 𝑚𝑏𝑞𝑚.  (7) 13 

Let us observe that the consequence of the previous equations is the following recursive 14 

formula: 15 

 𝑎𝑞𝑛−1 = 𝑛𝑏𝑞𝑛,  (8) 16 

where 𝑛 ∈ {1, … , 𝑚 − 1}. 17 

The above recurrence can be solved explicitly. The solution, so the representation for the 18 

stationary number of rented bikes in the station containing strictly 𝑚 bikes, has the following 19 

form (see also e.g. Adan, Resing, 2015): 20 

 𝑞𝑛 = [
(𝑎 𝑏⁄ )𝑛

𝑛!
] : [∑

(𝑎 𝑏⁄ )𝑖

𝑖!

𝑚
𝑖=0 ] =

𝜌𝑛 𝑛!⁄

∑ 𝜌𝑖 𝑖!⁄𝑚
𝑖=0

,  (9) 21 

where 𝑛 ∈ {0, 1, … , 𝑚} and 𝜌 =
𝑎

𝑏
 denote the so-called offered load (traffic load) in the 22 

considered queueing model and defines the proportion between the arrival rate and service 23 

speed.  24 

The so-called blocking probability is of particular importance for assessing the system is 25 

functioning, i.e., the probability that all available bikes will be rented and, consequently,  26 

the upcoming customer will be lost. This probability is equal to 𝑞𝑚, and hence 27 

 𝑞𝑏𝑙𝑜𝑐𝑘 =
𝜌𝑚 𝑚!⁄

∑ 𝜌𝑖 𝑖!⁄𝑚
𝑖=0

.  (10) 28 

It is possible to use blocking probability to represent the average (mean) number of rented 29 

bicycles without calculating the sum of the appropriate numerical series. We have  30 

(see e.g. Adan, Resing, 2015) 31 

 𝐸(𝑋) = 𝜌(1 − 𝑞𝑏𝑙𝑜𝑐𝑘).  (11) 32 

  33 
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4. Numerical examples 1 

The numerical results were obtained by a Python program using a math library, which code 2 

is presented in figure 1 below. 3 

 4 

Figure 1. Program code. 5 

Source: Authors’ own. 6 

The results differ depending on the input parameters (a, b, and m). The numerical results 7 

are presented in Table 1. 8 

Table 1. 9 
Numerical results 10 

Input parameters: 

a = 1.5, b = 1.0, m = 5 

Input parameters: 

a = 2, b = 1.0, m = 5 

Input parameters: 

a = 1.5, b = 1.5, m = 5 

Input parameters: 

a = 1.5, b = 2.0, m = 5 

Probabilities q_n: 

q_0: 0.22413 

q_1: 0.33619 

q_2: 0.25214 

q_3: 0.12607 

q_4: 0.04728 

q_5: 0.01418 

Probabilities q_n: 

q_0: 0.13761 

q_1: 0.27523 

q_2: 0.27523 

q_3: 0.18349 

q_4: 0.09174 

q_5: 0.03670 

Probabilities q_n: 

q_0: 0.36810 

q_1: 0.36810 

q_2: 0.18405 

q_3: 0.06135 

q_4: 0.01534 

q_5: 0.00307 

Probabilities q_n: 

q_0: 0.47243 

q_1: 0.35432 

q_2: 0.13287 

q_3: 0.03322 

q_4: 0.00623 

q_5: 0.00093 

Blocking probability  

(q_block): 

q_block: 0.06328 

Blocking probability  

(q_block): 

q_block: 0.26667 

Blocking probability 

(q_block): 

q_block: 0.00833 

Blocking probability  

(q_block): 

q_block: 0.00198 

Mean Number of Rente

d Bicycles (E(X)): 

E(X): 1.40508 

Mean Number of Rented 

Bicycles (E(X)): 

E(X): 1.46667 

Mean Number of Rented 

Bicycles (E(X)): 

E(X): 0.99167 

Mean Number of Rented 

Bicycles (E(X)): 

E(X): 0.74852 
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5. Source: Authors’ own 1 

The results show that if the arrival rate increases, the mean of rented bicycles also increases. 2 

In case the service rate increases, the mean of rented bicycles decreases. The numerical 3 

examples show that the model works properly and can be easily described from a 'human's point 4 

of view'. 5 

6. Conclusions 6 

To declare the city as smart, it is necessary to provide different services for the inhabitants. 7 

One of the most popular services is a bike-sharing station. As we assume, the number of users, 8 

the number of bikes, and many more parameters should be considered as crucial to the proper 9 

service of inhabitants. The presented paper shows that the queuing model can provide the proper 10 

satisfaction level based on real data for a chosen city. The satisfaction of citizens is one of the 11 

requested values for a smart city. 12 
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