
S I L E S I A N U N I V E R S I T Y O F T E C H N O L O G Y P U B L I S H I N G H O U S E

SCIENTIFIC PAPERS OF SILESIAN UNIVERSITY OF TECHNOLOGY 2023

ORGANIZATION AND MANAGEMENT SERIES NO. 186

http://dx.doi.org/10.29119/1641-3466.2023.186.14 http://managementpapers.polsl.pl/

DUAL INGRESS ARCHITECTURE DESIGN PATTERN 1

FOR KUBERNETES APPLICATIONS 2

Piotr P. JÓŹWIAK 3

Wroclaw University of Science and Technology; piotr.jozwiak@pwr.edu.pl, ORCID: 0000-0002-5325-3728 4

Purpose: The article focuses on the analysis of the mechanism for exposing Services running 5

on a Kubernetes cluster using an Ingress type definition. It discusses the basics of this 6

mechanism, pointing out its fundamental limitation of being able to use only single technology 7

simultaneously in handling traffic to a web application. The paper presents an architectural 8

pattern that enables the simultaneous integration of two Ingress definitions, combining the 9

advantages of both systems used. 10

Design/methodology/approach: Available solutions for exposing applications served in the 11

Kubernetes cluster were analyzed. As a result of the research, an enhancement was proposed to 12

allow the use of two services simultaneously, providing broader system functionality. 13

Findings: An approach was proposed to use two Ingress controllers simultaneously in the form 14

of an external cloud service and an internal Nginx service running on a Kubernetes cluster. 15

Originality/value: A design pattern is presented along with an example implementation of dual 16

Ingress on an AKS cluster in Azure. 17

Keywords: Kubernetes, Ingress, architectural pattern, limitations, Azure, Application 18

Gateway, Nginx. 19

Category of the paper: Research paper, Technical paper. 20

1. Introduction 21

The Kubernetes cluster is becoming a mainstream global technology, according to a survey 22

conducted by the Cloud Native Computing Foundation (CNCF). As many as 96% of the 23

organizations surveyed indicated that they are using Kubernetes or are in the process of 24

evaluating its capabilities (CNCF Annual survey, 2021). Of these, more than a quarter of 25

respondents indicated that they are using Kubernetes as a cloud service provided by major cloud 26

operators in the global market. 27

 28

186 P.P. Jóźwiak

The growing popularity is linked to the provision of solutions that allow for an easily 1

scalable environment compared to applications running on virtual machines. Kubernetes is 2

gaining in proportion to the increasing popularity of application containerization. It keeps code 3

operational and speeds up the delivery process. The Kubernetes API allows automating a lot of 4

resource management and provisioning tasks. According to IBM, the most important factors 5

influencing the choice of Kubernetes are (Top 7 Benefits of Kubernetes, 2022): 6

 Container orchestration savings, 7

 Increased DevOps efficiency, 8

 Deploying workloads in multicloud environments, 9

 More portability with less chance of vendor lock-in, 10

 Automation of deployment and scalability, 11

 App stability and availability in a cloud environment, 12

 Open-source benefits of Kubernetes. 13

In this paper, I focus on presenting the problem of making an application running in 14

a Kubernetes cluster accessible to an external environment using the Ingress mechanism. 15

Kubernetes Ingress is the basic tool that defines access to an application from the outside. 16

Production use of this mechanism requires support in the form of external resources, usually 17

provided by a cloud operator. In this paper, I outline what the basics of Ingress are and its 18

limitations. Additionally, I present a way to circumvent the limitation of single Ingress per 19

Kubernetes Service, allowing two Ingress mechanisms to be used simultaneously for 20

a designated application service running on a cluster. 21

2. Kubernetes Ingress basics 22

An Ingress is a native Kubernetes object that defines external access to a Service running 23

on a cluster (Burns et al., 2022). The Service object itself groups multiple Pods under one 24

common type. The task of the Ingress manifest is to define a set of rules that govern inbound 25

connection mapping between Services. This mechanism consolidates the routing rule to 26

Services into a single resource. This routing is based on layer seven of the ISO/OSI model. 27

Without the Ingress mechanism, each Service to be accessed outside the cluster would require 28

to use separate definitions of e.g. LoadBalancers or NodePorts. LoadBalancer and NodePort 29

exposes a service by specifying that value in the service's type. This limitation is particularly 30

challenging for applications designed in microservices architecture. This definition makes it 31

impossible to expose the entire application under one common URL because each new 32

LoadBalancer will receive a separate IP address. 33

 34

Dual Ingress architecture design pattern… 187

Ingress, on the other hand, is a completely independent resource to your Service. This makes 1

it decoupled and isolated from the Services you want to expose (Burns et al., 2022; Palmer, 2

2023). An Ingress is used when we have multiple Services and we want the outbound requests 3

routed to the Service based on URL path. Consider an example with two Services, S1 and S2 in 4

a cluster. Then, for URL myservice.com/s1 we want to route to the S1 Service and accordingly 5

for URL myservice.com/s2 we want to expose Pods served from S2 Service. These routings 6

will be performed by an Ingress. Unlike NodePort or LoadBalancer, Ingress is not actually 7

a type of Service. Instead, it is an entry point that sits in front of multiple services in the cluster. 8

Figure 1 shows a diagram of how Ingress works showing the links between Kubernetes entities. 9

In the example shown, Service S1 groups two Pods of a single Web1 web application. This way, 10

traffic can be balanced between multiple Pods. 11

 12

Figure 1. Diagram showing the links between Kubernetes Ingress, Services and Pods. 13

To use the above mechanism, it must be supported by the environment on which Kubernetes 14

is running. This is because, to function, Ingress needs to access the network interface on which 15

external traffic will be handled. By default, the cluster does not have this access, as this is 16

resolved differently in each environment/cloud. Thus, it is the duty of Kubernetes 17

administrators to provide and configure the appropriate mechanism. It is done by installing the 18

appropriate Ingress Controller. The most popular Ingress Controller is the Nginx Ingress 19

(Nginx docs, 2023). This is evident from the direct support by major cloud providers such as 20

AWS, Azure and Google Cloud. The necessary support that cloud operators provide is related 21

to the implementation of specific Ingress Controllers that tie the Nginx server to external 22

services available in each cloud. In the case of AWS EKS, Nginx works alongside the 23

AWS Load Balancer (Provide externall access…, 2023). In the case of Microsoft Azure AKS, 24

the native service called Azure Load Balancer is used (Microsoft learn: Create an ingress, 25

2023). Correspondingly, Google Cloud integrates the Google Cloud L4 Load Balancer with 26

Nginx (Ingress with Nginx, 2023). As can be seen, each of the indicated cloud operators by 27

default uses its own service based on load balancer functionality to integrate with Nginx-based 28

Ingress. This limitation will be further elaborated in the next section. 29

188 P.P. Jóźwiak

3. Motivation for research 1

However, the solution described above has a drawback. When using Nginx Ingress, 2

we bind ourselves to a specific physical implementation that the cloud operator uses to integrate 3

with cluster. Typically, it is some kind of a layer four based load balancer. In my example, 4

I will focus on the solution offered by Microsoft Azure. Load Balancer provided by Azure is 5

not the only service that can be used here. Other services that Azure offers are Traffic Manager, 6

Front Door or Application Gateway. Each of these services has its own specialized application. 7

The Load Balancer itself in Azure operates at layer four of the ISO/OSI model. In Azure, 8

we also find a more tailored service for the requirements of web application/RESTful traffic, 9

which is the Application Gateway (AppGw) (Microsoft learn: What is Azure Application 10

Gateway, 2023). AppGw has the advantage of working on layer seven of the protocol. 11

However, its advantages do not end there, as AppGw in Azure can be extended with a few 12

additional functionalities, such as Web Application Firewall (WAF), autoscaling, 13

high availability, URL-based routing, SSL encryption, SSL termination, Cookie-based affinity. 14

With the above in mind, Microsoft Azure provides an Ingress Controller for Kubernetes 15

clusters that directly uses AppGw. This service is called AGIC and is a direct alternative to 16

Nginx+Load Balancer. The question here is which solution to use? Officially, you have to 17

decide on one of these services, so when designing the system architecture, the designer has to 18

decide between Ingress based on Nginx+Azure Load Balancer or Ingress based on Application 19

Gateway. 20

Both solutions have many important functionalities. Some of these are available in both 21

solutions. However, some functionalities are only available in one of the solutions exclusively. 22

An example of this is the WAF available in AGIC, which is not available in the pure Nginx 23

Ingress Controller solution. The WAF functionality is highly desirable for applications with 24

strong IT system security requirements. A web application firewall is highly effective for 25

detecting or preventing web attacks, leveraging the OWASP ModeSecurity Core Rule Set. 26

For example, it can protect web applications from cross-site scripting and SQL injection attacks. 27

On the other hand, Nginx provides many functionalities that are not directly available in AGIC. 28

Using Nginx as an Ingress Controller allows you to take advantage of Single Sign-on (SSO) or 29

provides a powerful mechanism for dynamic reconfigurations possible directly from 30

Kubernetes manifests. 31

 32

Dual Ingress architecture design pattern… 189

With the above in mind, there are situations where the architectural design would indicate 1

the need to use both solutions simultaneously. Such a configuration offers the possibility to 2

implement richer functionality by combining the features of both solutions. However, there is 3

no documented method to achieve this. There is no such Ingress manifest definition that could 4

integrate both solutions into a common functionality. In the following section, I present the 5

architecture design pattern with its example implementation that combines both solutions. 6

The key task of the discussed solution is to enable control of the entire system via Kubernetes 7

manifests. Additionally, discussed architecture proposal gains a more elaborate model for the 8

division of responsibilities between the DevOps and Security teams which is discussed in the 9

next chapter. 10

4. Architecture pattern proposition for Dual Ingress Controller 11

To address the need to use both Ingress Controllers simultaneously, I present a two-tier 12

Ingress architecture for a service running on an Azure AKS cluster. The simultaneous use of 13

the Application Gateway and the Nginx Ingress Controller provides broader functionality and 14

greater flexibility over standard solutions. Figure 2 shows an architectural diagram of the 15

presented system. 16

 17

Figure 2. Diagram presenting Dual Ingress architectural pattern. Proposed design uses Application 18
Gateway as an entry point for application and simultaneously Nginx Ingress controller. Diagram 19
describes relations between all entities in presented pattern. 20

 21

190 P.P. Jóźwiak

The main functional objective of the system is to run any web or RESTful system on the 1

Kubernetes cluster. In the diagram from figure 2, the target application is installed in the 2

namespace webapp. It consists of two Pods and a standard Kubernetes Service definition 3

pointing to the application. The described scenario is the standard way how applications are 4

deployed and served from Kubernetes cluster. An example of such a definition is presented in 5

table 1. 6

The detailed routing to the above application, which will take place on a URL basis, 7

is implemented on the Nginx Controller. For this purpose, the controller must be installed on 8

a cluster. In the case of Azure AKS, the controller installation procedure described in (Microsoft 9

learn: Create an ingress controller in AKS, 2023) can be used. In presented example, the Nginx 10

controller is installed in the namespace ingress-ctrler as shown in the diagram in figure 2. 11

The Nginx controller installation consists of a Pod on which the Nginx server is running and 12

its own Service object. This Service directly integrates with the Azure Load Balancer. 13

Thus, any network traffic passed to the Load Balancer input is effectively passed to the Pod 14

with the Nginx server configured as reverse proxy. The second very important role of the 15

aforementioned Pod is to observe the Ingress objects created on the cluster, which specify the 16

ingress class on nginx in the spec.ingressClassName field of the manifest. An example of 17

an Ingress definition linking the web application service to the Nginx controller is presented in 18

table 2. The purpose of this manifest is to specify the URL path under which the web application 19

is to be accessed externally. 20

Table 1. 21
Example Kubernetes manifests for application deployment. On left an deployment for example 22

web application, on right Service definition 23

apiVersion: apps/v1

kind: Deployment

metadata:

 name: webapp-hw

 namespace: webapp

spec:

 replicas: 2

 selector:

 matchLabels:

 app: webapp-hw

 template:

 metadata:

 labels:

 app: webapp-hw

 spec:

 containers:

 - name: webapp-hw

 image: mcr.microsoft.com/azuredocs/aks-helloworld:v1

 ports:

 - containerPort: 80

 env:

 - name: TITLE

 value: "Example WebService"

apiVersion: v1

kind: Service

metadata:

 name: webapp-hw

 namespace: webapp

spec:

 type: ClusterIP

 ports:

 - port: 80

 selector:

 app: webapp-hw

Source: own work. 24

Dual Ingress architecture design pattern… 191

The next step required to implement the Dual Ingress architecture is installing the AppGw 1

controller (AGIC). The AGIC controller itself is installed in the Kubernetes cluster as 2

a corresponding AKS extension. It is an internal Azure mechanism that installs according to the 3

instructions available in (Microsoft learn: Creating an ingress controller wit new Application 4

Gateway, 2023), either as an Add-On or a Helm package. The execution of this instruction 5

provides the necessary AGIC Pod to the namespace of the kubernetes-system and creates 6

a physical Application Gateway in Azure. The installed AGIC Pod has a similar role to the 7

Nginx controller Pod. The task of this Pod is to observer the Ingress manifests for definitions 8

that indicate the ingress class as azure/application-gateway in the kubernetes.io/ingress.class 9

annotation. 10

To perform the integration of the two Ingress controllers, we need to link the two Services 11

to each other in an appropriate manner. Unfortunately, it is not possible to indicate in the Ingress 12

definition prepared for the AGIC to redirect to another Ingress, in our case to the Nginx Ingress 13

Controller. The main limitation of Ingress definitions is that only objects of type Service can 14

be exposed as the target object. This is the primary reason for the lack of solutions that present 15

the possibility of using both mechanisms simultaneously. 16

Table 2. 17
Nginx based Ingress manifest exposing Service webapp-hw on URL app.example.com 18

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: nginx-webapp

 namespace: webapp

 annotations:

 nginx.ingress.kubernetes.io/ssl-redirect: "false"

 nginx.ingress.kubernetes.io/use-regex: "true"

 nginx.ingress.kubernetes.io/rewrite-target: /$1

spec:

 ingressClassName: nginx

 rules:

 - host: app.example.com

 http:

 paths:

 - path: /(.*)

 pathType: Prefix

 backend:

 service:

 name: webapp-hw

 port:

 number: 80

Source: own work. 19

 20

192 P.P. Jóźwiak

Table 3. 1
Kubernetes Application Gateway based Ingress manifest exposing Nginx controller Service 2

on URL app.example.com. Ingress definition also contains TLS section for encryption and 3

certificate provisioning by Let’s Encrypt 4

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: appgw-nginx

 namespace: ingress-ctrler

 annotations:

 kubernetes.io/ingress.class: azure/application-gateway

 cert-manager.io/cluster-issuer: letsencrypt-appgw-http

spec:

 tls:

 - hosts:

 - app.example.com

 secretName: appgw-cert-secrets

 rules:

 - host: app.example.com

 http:

 paths:

 - path: /*

 pathType: Prefix

 backend:

 service:

 name: nginx-ingress-controller-svc

 port:

 number: 80

Source: own work. 5

However, there is a way around this problem and integrate AGIC and Nginx into a two-tier 6

ingress architecture. To do this, we can take advantage of the fact that the Nginx Controller also 7

has its own Kubernetes Service object. It is defined in the ingress-ctrler namespace as 8

a mechanism to bind the Azure Load Balancer to Nginix Pod. In the solution discussed here, 9

I use this definition directly to bind the AGIC Ingress to the Service of Nginx controller. 10

Such a configuration is shown in the diagram in figure 2. An example implementation of Ingress 11

pointing to Nginx is shown in table 3. It is important that the Ingress definition for the AGIC is 12

defined in the ingress-ctrler namespace. This is necessary because the Ingress itself can only 13

point to the target Service from the same namespace. This does not cause major complications, 14

as Ingress controllers are implemented in such a way that they observe the corresponding 15

manifests in any namespace. Using such a solution makes it possible to link the two mechanisms 16

into a chain of two Ingress Controllers running one after the other. The AGIC acts as a direct 17

external interface where network traffic goes at first to the application. This traffic is then 18

redirected to the internal Load Balancer via the AGIC Ingress, which points to the Nginx 19

Controller as the next step in the network traffic path. The Nginx server redirects the traffic in 20

the second step directly to the Pod of the target application that handles the user's request. 21

Thus, we have a two-tier architecture for handling network traffic, connecting all the 22

mechanisms available in both Ingress controllers. 23

There are many advantages of this solution, the most important of which I outline below. 24

Dual Ingress architecture design pattern… 193

4.1. Web Application Firewall as SaaS 1

The first advantage is the ability to use the Web Application Firewall (WAF), which is 2

provided as a SaaS service by Azure. This is a very sophisticated system that enhances the 3

security of a web-based system, with the aim of detecting and responding to anomalies in 4

network traffic. It is important to note that the system administrator does not need to be a high-5

level expert in this area, as WAF uses the OWASP ModeSecurity Core Rule Set providing 6

recommendations available for use. The separation of the WAF functionality as a SaaS service 7

available outside the cluster also allows for easier separation of duties for the DevOps and 8

Security teams. The Security team defines the necessary security definitions directly on AppGw 9

and WAF, without the need to interfere with the Web application itself or the Kubernetes cluster. 10

On the other hand, the DevOps team uses the Nginx service to implement the functional rules. 11

In this situation, access to the security rules defined on AppGw+WAF may not be available to 12

the DevOps team, as they will deploy their functional rules on Nginx instead. This increases 13

the level of security by narrowing access to defined rules only by Security team. 14

4.2. SSL offload 15

Another important asset of the proposed architecture is SSL offloading. SSL offloading is 16

the process of removing the SSL-based encryption from incoming traffic that a web server 17

receives to relieve it from decryption of data. The entire encryption effort has been moved off 18

the cluster to AppGw. Network traffic has been secured to the first device, while in many 19

situations internal network connections do not need to be encrypted. This relieves the end 20

devices of additional power requirements, thereby increasing the throughput of the solution and 21

reducing costs. 22

4.3. Automated TLS certificate renewal 23

Using HTTPS connection encryption requires obtaining a certificate with which the 24

connection will be encrypted. Since in the solution presented here, all encryption handling has 25

been moved to AppGw, we can use the cert-manager that works with this service. 26

The cert-manager provided by Let’s Encrypt can integrate with Azure AppGw by installing the 27

corresponding controller on the Kubernetes cluster. For this purpose, the Let’s Encrypt Pod was 28

installed in the namespace of cert-manager according to the documentation available in 29

(Microsoft learn: Use TLS…, 2023). The cert-manager mechanism observes the Ingress 30

definitions created for AppGw and, when a definition is detected that indicates the need to 31

enable TLS, performs the appropriate steps to automatically acquire a trusted certificate 32

prepared by Let’s Encrypt certificate authority. An example of such a link is shown in table 3. 33

The corresponding annotation of cert-manager.io/cluster-issuer and the spec.tls section informs 34

the cert-manager mechanism to acquire a certificate and handle encrypted HTTPS traffic. 35

This is done by temporarily manipulating the routing on AppGw, exposing temporary URLs 36

194 P.P. Jóźwiak

pointing to Let’s Encrypt Pod. A third-party certification system is then requested in the next 1

step to issue a certificate, and confirmation of domain authority is achieved through 2

a corresponding feedback message provided on the temporary URL. Once the certificate is 3

correctly obtained, this certificate is stored in the Secret on Kubernetes cluster and 4

automatically installed on AppGw by the cert-manager. In addition, Let’s Encrypt cert-manager 5

itself takes care of the appropriate rollover of expired certificates automatically. 6

4.4. Internal entry for maintenance team 7

Basing communication on two-party access to applications provides the possibility of 8

maintenance operation. If it is necessary to temporarily disable end-user access for 9

administrative work, the easiest way to achieve this is to temporarily redirect traffic on the 10

AppGw to the maintenance work page or appropriate HTTP 503 Service Unavailable response. 11

At the same time, access to the application is still possible from internal corporate traffic 12

directly using the Load Balancer interface integrated with the Nginx Controller. 13

4.5. Single Sign-on with Nginx 14

Nginx proxied applications can use Single Sign-On (SSO) to secure access to them. Several 15

solutions providing SSO authorization and authentication can be integrated for this purpose, 16

such as Auth0, Keycloak, OneLogin or Microsoft Active Directory FS. This makes it possible 17

to centralize access handling for individual elements of the overall system. 18

4.6. Caching, compression, and scaling 19

Nginx server can also cache and compress a content to increase user experience. If caching 20

is not possible or sufficient to handle the traffic, we can easily scale applications by increasing 21

the number of Pods that handle requests. Nginx provides a load balancer mechanism to handle 22

scalable network traffic 23

5. Conclusions 24

This paper presents an architectural pattern using a Dual Ingress consisting of Azure 25

Application Gateway and Nginx Ingress Controller as a reverse proxy. The described solution 26

provides several functionalities that combine the capabilities of both mechanisms into a single 27

cohesive system. The use of Kubernetes cluster provides the solution with high scalability 28

alongside with additional SaaS services enhancing the capabilities of the system. The discussed 29

solution has been successfully implemented in a commercial solution providing empirical 30

confirmation of the designed advantages. The dual-tier Ingress system successfully handles 31

variable network traffic using the austoscaler and Nginx Load Balancer. The presented 32

Dual Ingress architecture design pattern… 195

architecture pattern provides a cost-optimized solution, adapting to the requirements of the 1

current network traffic. It allows for flexibility in choosing where to implement certain 2

mechanisms, considering the cost-effectiveness of implementation between AppGw and Nginx. 3

The entire solution was deployed in the Microsoft Azure cloud, using Application Gateway 4

Ingress as the internet facing interface. The presented solution, combined with the tools 5

provided by Crossplane (Crossplane Concepts, 2023), made it possible to achieve full 6

automation of the environment provisioning and application deployment process on Kubernetes 7

cluster. Network traffic is secured by appropriate encryption of connections using automatic 8

acquisition of TLS certificates. At the same time, the presented architecture provides internal 9

access to system components during maintenance windows, which requires temporary 10

disconnection of services from public access. 11

It is worth mentioning that the proposed architectural pattern of the Dual Ingress on 12

Kubernetes cluster is not limited to the Azure cloud only. The presented example was discussed 13

in the context of cloud from Microsoft, however, the general concept is also feasible to 14

implement in other Kubernetes service providers, like AWS or Google. The required changes 15

will only relate to the practical application, which requires the installation of corresponding 16

controllers available from the respective service provider. 17

References 18

1. Burns, B., Beda, J., Hightower, K., Evenson, L. (2022). Kubernetes: Up and Running. 19

O’Reilly Media. 20

2. CNCF Annual survey 2021 (2021). Retrieved from: https://www.cncf.io/wp-21

content/uploads/2022/02/CNCF-AR_FINAL-edits-15.2.21.pdf, 5 May 2023. 22

3. Crossplain Concepts (2023). Retrieved from: https://docs.crossplane.io/v1.12/concepts/, 23

15 April 2023. 24

4. Ingress with NGINX controller on Google Kubernetes Engine (2023). Retrieved from: 25

https://cloud.google.com/community/tutorials/nginx-ingress-gke, 6 May 2023. 26

5. Microsoft learn: Create an ingress controller in Azure Kubernetes Service (AKS) (2023). 27

Available online. Retrieved from: https://learn.microsoft.com/en-us/azure/aks/ingress-28

basic?tabs=azure-cli, 5 May 2023. 29

6. Microsoft learn: Creating an ingress controller with a new Application Gateway (2023). 30

Retrieved from: https://learn.microsoft.com/en-us/azure/application-gateway/ingress-31

controller-install-new, 15 May 2023. 32

7. Microsoft learn: Use TLS with an ingress controller on Azure Kubernetes Service (AKS) 33

(2023). Retrieved from: https://learn.microsoft.com/en-us/azure/aks/ingress-34

tls?tabs=azure-cli, 15 May 2023. 35

196 P.P. Jóźwiak

8. Microsoft learn: What is Azure Application Gateway? (2023). Retrieved from: 1

https://learn.microsoft.com/en-us/azure/application-gateway/overview, 6 May 2023. 2

9. Nginx docs - Nginx Ingress Controller (2023). Retrieved from: 3

https://docs.nginx.com/nginx-ingress-controller/, 5 May 2023. 4

10. Palmer, M. (2023). Kubernetes Ingress with Nginx Example – Kubernetes Book. 5

Retrieved from: https://matthewpalmer.net/kubernetes-app-developer/articles/kubernetes-6

ingress-guide-nginx-example.html, 5 May 2023. 7

11. Provide external access to Kubernetes services in Amazon EKS | AWS re:Post (2023). 8

Retrieved from: https://repost.aws/knowledge-center/eks-access-kubernetes-services, 9

5 May 2023. 10

12. Top 7 Benefits of Kubernetes (2022). IBM Cloud Education. Retrieved from: 11

https://www.ibm.com/cloud/blog/top-7-benefits-of-kubernetes, 5 May 2023. 12

