
S I L E S I A N U N I V E R S I T Y O F T E C H N O L O G Y P U B L I S H I N G H O U S E

SCIENTIFIC PAPERS OF SILESIAN UNIVERSITY OF TECHNOLOGY 2023

ORGANIZATION AND MANAGEMENT SERIES NO. 186

http://dx.doi.org/10.29119/1641-3466.2023.186.13 http://managementpapers.polsl.pl/

CURRENT INFRASTRUCTURE AS A CODE AUTOMATION TRENDS 1

IN CONTEXT OF CLOUD AGNOSTIC RESOURCE PROVISIONING 2

Ireneusz J. JÓŹWIAK1, Piotr P. JÓŹWIAK2*, Krzysztof ZATWARNICKI3 3

1 General T. Kościuszko Military University of Land Forces in Wrocław; ireneusz.jozwiak@awl.edu.pl, 4
ORCID: 0000-0002-2160-7077 5

2 Wroclaw University of Science and Technology; piotr.jozwiak@pwr.edu.pl, ORCID: 0000-0002-5325-3728 6
3 Opole University of Technology; k.zatwarnicki@po.edu.pl, ORCID: 0000-0001-6156-6030 7

* Correspondence author 8

Purpose: The aim of the research is to determine the maturity of the available tools for building 9

Software as a Service (SaaS) services that enable automation of deployment to multiple cloud 10

operators using a single infrastructure definition known as Cloud Agnostic. 11

Design/methodology/approach: The paper related to the development of areas of software 12

engineering has been the automation of processes for building, testing, integrating, 13

and delivering applications developed by large development teams. It has come to be known as 14

continuous delivery process. We provided an overview of the tools available to automate 15

infrastructure provisioning in Cloud Agnostic manner. 16

Findings: The research indicated that there are solutions on the market for building automation 17

of cloud infrastructures, however, most of these are not geared towards achieving the Cloud 18

Agnostic definition. One tool called Crossplane was researched, which was designed from the 19

outset to enable Cloud Agnostic definitions for infrastructure provisioning. The research has 20

shown that, as of today, the Kubernetes platform with an extension of Crossplane is the best 21

approach to enable a loose attachment to a single cloud operator. 22

Originality/value: The proposal to use the Kubernetes platform with additional tools 23

significantly reduces the risk of strong attachment to single operator cloud solutions. 24

The proposed design approach can be helpful for IT system architects in decision making. 25

Keywords: strategy of infrastructure provisioning, infrastructure automation, software 26

engineering, tool, Cloud Agnostic resource definitions. 27

Category of the paper: Research paper. 28

1. Introduction 29

In recent years, a strongly developing area of software engineering has been the automation 30

of processes for building, testing, integrating, and delivering applications developed by large 31

development teams. Work related to the development of these areas has come to be known as 32

168 I.J. Jóźwiak, P.P. Jóźwiak, K. Zatwarnicki

continuous integration/continuous delivery processes, abbreviated CI/CD. Nowadays, 1

it is no longer sufficient to compile source code into a form suitable only for traditional 2

distribution, e.g. in the form of executable binary files, because the distribution process has 3

changed significantly. In many cases moving towards a Software as a Service (SaaS) sales 4

model. The ability to build SaaS applications is closely linked to the ever-increasing popularity 5

of public cloud services provided by major IT players such as Google, Microsoft, Amazon, 6

and Oracle. Many companies tie their commercial success directly to deploying their services 7

on these environments rather than building their own on-premise computing center. This type 8

of approach unlocks significant potential for companies that do not need to have large financial 9

resources at the outset. Cloud services make it possible to spread costs over time and match 10

them closely to current demand, increasing the scalability of investments. The use of public 11

data centers eliminates the need to purchase hardware with a stockpile to ensure uninterrupted 12

continuity of operation with the increasing volume of traffic generated by the customer of 13

a given service. 14

2. Models of Infrastructure as a Code 15

The increased interest in cloud computing and the automation of software delivery has 16

forced the cloud market to make available a suitable API and SDK to define hardware resources 17

as code. Tools related to the automation of hardware resource orchestration have been called 18

Infrastructure as a Code (IaaC). With usage of many programming languages, IaaC is 19

responsible for provisioning and managing resources in data centers. The main premise of IaaC 20

is to completely eliminate the manual provisioning and configuration of all resources by 21

humans. This is intended to minimize human error and thus minimize the risk of errors in the 22

application environment. Defining infrastructure as a code also ensures that complex enterprise 23

execution environments can be built in a consistent, automated, fast and testable manner. 24

IaaC automation unlocks human resources that can be allocated to other business tasks. 25

There are two approaches for building IaaC, closely related to the available programming 26

paradigms (ScriptRock, 2015): 27

 declarative/functional approach, 28

 imperative/procedural approach. 29

The declarative approach involves providing the configuration in the form of a description 30

of what we want to have. It is the task of the process performing the automation in question to 31

know how to do it. The opposite approach is the imperative approach, which focuses on 32

describing how to get to the desired state instruction by instruction (Loschwitz, 2014). 33

So, in this approach, the programmer uses specific procedures that transform the environment 34

to its final state. 35

Current Infrastructure as a Code automation trends… 169

Both approaches for building IaaC have their advantages and disadvantages. The imperative 1

approach offers greater control over the automation process. The imperative language 2

expression provides the necessary programming structures to allow alternative execution of 3

specific procedures. However, in this approach it is very difficult to determine what the target 4

infrastructure configuration should look like. The only way to determine this is by tracing the 5

source code and trying to understand how it works. This problem does not occur with the 6

declarative approach. As the name suggests, this approach inherently defines what we want our 7

environment to look like, without providing instructions on how to get there. This description 8

is completely devoid of instructions defining how to get to that state. The IaaC runtime 9

environment hides the details of the execution of the definition. On the one hand, this is a very 10

tempting assumption that naively relieves us of the compulsion to know how the process works. 11

However, in practice it is often the case that the tool stack in a state where it is unable to 12

transition to a desired new state. In such a situation, the team is relied upon to find a suitable 13

solution to the problem, which many times provides to manually streamlining the process 14

ad-hoc. This is an undesired situation, but unfortunately one that realistically occurs in practice. 15

Very important issue of IaaC is the problem of defining infrastructure in Cloud Agnostic 16

manner. The Cloud Agnostic process has the basic characteristic that one common definition is 17

independent of the specifics of a particular cloud service provider. This is a state that is very 18

difficult to achieve, often due to differences in philosophy and tools provided by individual 19

providers. The primary task of building Cloud Agnostic tools is to prepare IaaC definitions that 20

loosely link us to one provider, allowing us to quickly convert to another provider. In an ideal 21

approach, often not fully achievable, Cloud Agnostic assumes that a single code will work for 22

all platforms (Copado, 2022). 23

3. Synergy of DevOps teams 24

The emergence of IaaC processes has also had a significant impact on the organization of 25

the software development and maintenance teams themselves. The work of IT administrator’s 26

teams, hitherto understood as imperative, manual control of infrastructure configuration 27

through partial automation in scripts, is slowly being transformed into a nature closer to that of 28

IT developer’s teams. This is becoming possible because IaaC and CI/CD, at its foundation, 29

insists on replacing these practices in favor of a full, consistent description in the form of code, 30

which will not be executed directly by humans, but by automations such as, for ex. Jenkins 31

pipelines (Kim, Humble, Debois, Willis, 2016). This has led to the emergence of a new software 32

development methodology called DevOps (Azad, Hyrynsalmi, 2023). This methodology 33

recognizes the product as something broader than just software development, also including the 34

processes of software integration, deployment (alternative delivery), maintenance in the 35

170 I.J. Jóźwiak, P.P. Jóźwiak, K. Zatwarnicki

definition of the product. This methodology strongly unifies two teams hitherto seen as 1

separate, creating multidisciplinary teams holistically responsible for the entire process of 2

software development, testing and running in target environments (Kim, Humble, Debois, 3

Willis, 2016). 4

Automation is a key enabler of business success, according to a study by Dynatrace, 5

published in 2022 by CISO REPORT (Ciso Report, 2023). As many as 90% of the organizations 6

surveyed indicated that the pressure for digital transformation has increased significantly in the 7

last 12 months. At the same time, only 34% of the organizations surveyed have mature DevOps 8

teams, while as many as 55% of organizations face tradeoffs among quality, security, and user 9

experience to meet the need for rapid transformation (Ciso Report, 2023). These studies clearly 10

indicate that the trend of building business success is strongly linked to the introduction of the 11

DevOps model into an enterprise organization. 12

4. Heterogeneity of Infrastructure as a Code 13

The emergence of the concept of describing infrastructure in the form of code executed by 14

computers has opened the path of rapid deployment, reducing the time from the publication of 15

new functionality in the code repository to deployment in production to as little as several 16

minutes. Once the changes have been committed to the code repository, the relevant processes, 17

known as pipeline, run automatically testing the quality of the code, provisioning a temporary 18

test infrastructure, and at the end instantly deliver the software to production environment. 19

The main problem with IaaC is finding the tools to create the required resources, often in 20

heterogeneous environments, which can be a challenge. Typically, meeting a rapid 21

implementation of DevOps methodologies that is cost optimal involves moving the on-premise 22

infrastructure to the cloud. This is not an easy decision, with many factors to be analyzed that 23

affect the ultimate success, from the obvious in the form of cost, to the availability of the 24

necessary resources from a given cloud provider. Also important are legal regulations, forcing, 25

for example, the storage of data in specific regions of the world, and the expectations of end 26

customers, who often only agree to sign a contract if the SaaS hosting infrastructure will be in 27

a specific cloud. 28

The foundation needed to describe the infrastructure in form of code is for the cloud 29

provider to provide the appropriate tools. In the next chapter, we focus on briefly characterizing 30

the available solutions used in the implementation of IaaC. 31

 32

Current Infrastructure as a Code automation trends… 171

5. Cloud native tools for infrastructure automation 1

Without the right tools provided by the cloud provider, it is impossible to think seriously 2

about infrastructure automation. They act as a fundamental doorway into the cloud, enabling 3

developer interaction with resources. In this paper, we provide a brief overview of these tools 4

available in the three most popular clouds: Amazon AWS, Microsoft Azure and Google Cloud. 5

5.1. Cloud Command Line Interfaces 6

The primary tool for interacting with clouds is the Command Line Interface (CLI), 7

accessible from the operating system command line. Its most common use is in various 8

shell/bash scripts. From the point of view of infrastructure administrators, it is the most natural 9

choice, as it fits directly into the tools that these teams use on a daily basis. The CLI allows 10

quick interaction from the operating system command line but is also well suited to automating 11

selected processes in, for example, Jenkins pipelines. 12

Amazon AWS makes the AWS CLI (AWS CLI, 2023) available to users in two versions. 13

The newer v2 version is a more extensive offering of its predecessor. The tool is available for 14

all popular operating systems, like Windows, macOS and Linux. It is also available as a Docker 15

image, removing the need to install the tool directly on the system. The AWS CLI delivers high 16

functional coverage, allowing configuration and management of almost all offered AWS 17

services. The AWS CLI also allows control over the output format, greatly enhancing the tool's 18

ability to be used in scripts. Both human-readable and software-parsable formats are available: 19

JSON, YAML, YAML-stream, text, table. 20

A similar tool is provided by Microsoft Azure, in the form of a CLI called az (Azure CLI 21

overview, 2023). The tool is available for all leading operating systems like Windows, macOS, 22

Linux and as a Docker image. It is also possible to use directly from a web browser in a service 23

called Cloud Shell. Coverage of functionality is very high. However, a lot of functionality 24

requires the installation of appropriate extensions called features. This can be inconvenient 25

when writing automation scripts, as you always have to remember to install all the features you 26

will need in the script. Unlike AWS CLI, Azure az has self-upgrade functionality. 27

The last featured service provider Google Cloud also has a CLI called gcloud (Install the 28

glocud CLI, 2023). The tool also has very high functional coverage. It is available like its 29

predecessors for all the platforms mentioned, including as a Docker image. 30

To some extent, each CLI reflects the ethos of their cloud. The AWS CLI is dense, powerful, 31

and occasionally inconsistent. The Azure CLI is rich, easy to get started with, and sometimes 32

more complicated than it should be. And the Google Cloud CLI is clean, integrated, 33

and evolving. However, the differences in these tools and the shell character makes them 34

ultimately a poor fit for mature Infrastructure automation solutions using IaaC. Shell scripts are 35

difficult to analyze and document. Any corrections can be erroneous. Of course, there is no way 36

172 I.J. Jóźwiak, P.P. Jóźwiak, K. Zatwarnicki

to have a Cloud Agnostic solution where one script can execute on all clouds. Wanting to cover 1

multiple clouds we are forced to write multiple versions of scripts. 2

5.2. Cloud Software Development Kits 3

While in the case of the CLI, all platforms provide very similar functionalities, the case is 4

more diverse in the case of the SDK. What is an SDK? An SDK is a Software Development 5

Library prepared for a specific language or framework. An SDK allows the infrastructure to be 6

defined in the form of imperative code. 7

Amazon AWS provides SDKs in as many as twelve programming languages, such as 8

(Developer Tools, 2023): Python, JavaScript, PHP, Java, C++, NodeJS, Go, Ruby, .Net, 9

Kotlin, Rust, Swift. However, AWS also provides specific SDKs for web development, mobile 10

development, or IoT. 11

Microsoft Azure provides SDKs in languages such as Azure-sdk repository (Azure-sdk, 12

2023): .Net, Go, C, C++, Java, JavaScript, Python. Additionally, as with AWS, it provides 13

specific SDKs for Android and iOS. 14

Google Cloud, also provides an SDK, but it works a bit differently. What Google calls the 15

Cloud SDK is for using the gcloud CLI tool, and if you want to use a specific language or 16

platform with GCP, then you use one of the hundreds of Google APIs (Google Cloud SDK, 17

2023). At the same time, Google provides libraries to support interaction with the APIs in 18

languages such as Java, Go, Python, Ruby, PHP, C#, C++, NodeJS. 19

Providing SDK libraries to support interaction with cloud computing greatly facilitates the 20

automation of the infrastructure, even allowing the relevant code to be embedded along with 21

the application code. The application itself is given the ability to be aware of where it is installed 22

and the state of the infrastructure. However, all the solutions mentioned above do not allow 23

Clous Agnostic IaaC to be written easily. The differences between the libraries are very large 24

and, in the case of Google cloud, they already differ at the level of operating philosophy. 25

Thus, a solution using the SDK directly forces multiple implementations for each cloud 26

separately. Therefore, achieving Cloud Agnostic IaaC is very expensive. 27

As with the CLI, answering the question of what the infrastructure contains requires 28

a tedious process of analyzing the source code. This is strongly related to the 29

imperative/procedural nature of programmatic solutions. 30

5.3. Other cloud specific IaaC tools 31

The difficulty of analyzing imperative code has forced the development of solutions based 32

on declarative code. Declarative notation is much easier for humans to understand and, above 33

all, much more efficient. The definition is more concise and less error prone. The declarative 34

solution ensures high reproducibility and modularity. The following shows which declarative 35

tools are provided by the three cloud providers. 36

Current Infrastructure as a Code automation trends… 173

Amazon AWS provides CloudFormation (CF) template functionality in YAML or JSON 1

format. This is the most supported tool for automating the orchestration of resources by AWS. 2

A CloudFormation template is a declarative record of the list of resources and their 3

configurations to be deployed in the cloud. CF provides an appropriate layer of parameterization 4

and modularity to the templates so that they can be reused. An important advantage of 5

CloudFormation is that it offers the deepest level of integration with the AWS cloud, including 6

features like Designer, which lets you create and modify CloudFormation templates directly on 7

the AWS website. However, there are times when small parts of the infrastructure configuration 8

are not available in the CloudFormation template. An example of this is the inability to create 9

an encrypted version of the SSM Parameter. Although the presented problem with the lack of 10

100% functionality coverage is found in all described tools. CloudFormation also provides 11

a high level of assurance that your templates will always remain compatible with AWS services, 12

even if Amazon makes changes to its services. An example of a CF template is shown in 13

Table 1. This is an example template that creates a subnet. 14

Table 1. 15
Example of AWS and Google templates for subnetwork provisioning 16

AWS Cloud Formation template

AWSTemplateFormatVersion: "2010-09-09"

Metadata:

 Generator: "notepad"

Parameters:

 SubnetCidr:

 Type: String

 Default: "10.0.0.0/24"

Resources:

 mySubnet:

 Type: AWS::EC2::Subnet

 Properties:

 VpcId:

 Ref: myVPC

 CidrBlock: !Ref SubnetCidr

 AvailabilityZone: "us-east-1a"

 Tags:

 - Key: stack

 Value: production

Google Cloud template

resources:

 - name: myNetwork

 type: compute.v1.network

 properties:

 autoCreateSubnetworks: true

 - name: mySubnet

 type: compute.v1.subnetwork

 properties:

 ipCidrRange: 10.130.0.0/20

 network: $(ref.myNetwork.selfLink)

 region: us-central1

Source: own work. 17

In Azure, two solutions are available to the user. The first is the Azure Resource Manager 18

(ARM) templates, enabling declarative description of infrastructure in JSON format. 19

They are an equivalent solution to Amazon CloudFormation, providing similar functionality, 20

including template parameterization. However, Microsoft has gone further and designed 21

a second tool called Bicep, which is its own domain-specific language (DSL) solution that 22

provides a declarative description of infrastructure. An important advantage of Bicep is its 23

immediate support for new functionality emerging from Microsoft's cloud. As soon as new 24

resource types and API versions are introduced by the vendor, they can be used in the Bicep 25

file, without having to wait for the tools to be updated before working with the new services. 26

174 I.J. Jóźwiak, P.P. Jóźwiak, K. Zatwarnicki

The language has a simple syntax and compared to a JSON template, is more concise and easier 1

to read. An example of a Bicep script is shown in table 2. Presented script creates an example 2

subnetwork. Due to space constraints for the article, an example of the ARM template is not 3

included, as it is based on JSON, which by its nature is quite large in a human-readable format. 4

Table 2. 5
Example of Azure Bicep template for subnetwork provisioning 6

param location string = resourceGroup().location

resource virtualNetwork 'Microsoft.Network/virtualNetworks@2021-05-01' = {

 name: 'sarahs-network'

 location: location

 tags: {

 Purpose: 'Example subnet'

 }

 properties: {

 addressSpace: {

 addressPrefixes: ['20.0.0.0/16']

 }

 subnets: [

 {

 name: 'mySubnet'

 properties: {

 addressPrefix: ['20.0.0.0/24']

 }

 }

]

 }

}

Source: own work. 7

Google Cloud also provides a very similar mechanism to both predecessors in the form of 8

scripts written in YAML format. This solution has been given the name Deployment Manager 9

(DM) template. Table 1 shows a comparison of the Amazon CloudFormation and Google 10

DM templates. Both scripts create a sample subnet. 11

The tools shown are very similar in many aspects. However, they are not tools that can be 12

used between clouds, as they are vendor specific. Thus, they have the same problem as already 13

discussed SDK tools. Achieving a cloud agnostic definition requires simultaneous description 14

in all tools. 15

6. Multicloud IaaC tools 16

The tools presented in the previous chapter are solutions provided by cloud service 17

developers, thus focusing only on interaction with a specific cloud. They are as sufficient as 18

possible in a situation where an implementation is only planned for one specific cloud. 19

In a situation where there is even a slight assumption that the application under development 20

will be delivered to more than one cloud, or where we are not sure which cloud to choose, 21

Current Infrastructure as a Code automation trends… 175

the use of the tools described above will prove to be a significant limitation increasing the cost 1

of the entire project. Today, there are tools that try to solve the above limitation. Tools such as 2

Ansible, Puppet or Terraform have been on the market for many years. 3

Ansible is widely considered to be simpler. Puppet is model-driven and was built with 4

systems administrators in mind. It follows a client-server (or agent-master) architecture. 5

You install Puppet Server on one or more servers and then install Puppet Agent on all the nodes 6

you want to manage. With both tools user can only provision a subset of available resources on 7

particular cloud. Ansible and Puppet requires the installation of specialized agent software 8

inside the cloud to operate/execute definitions. 9

Terraform is essentially the first tool to move significantly away from the pure context of 10

administrative work and was designed with the broader DevOps context in mind. Terraform 11

can manage infrastructure on all major cloud platforms. The human-readable YAML language 12

helps write infrastructure code quickly. Terraforms state allows you to track resource changes 13

throughout your deployments. For smooth operation, Terraform definitions should be written 14

to the code repository along with the current state. This is related to Terraforms operating 15

model, which saves locally executed operations and compares them with the current state in the 16

infrastructure. If you're using Terraform for a personal project, storing state in a single 17

terraform.tfstate file that lives locally on your computer works just fine. But if you want to use 18

Terraform as a team on a real product, you run into several problems (Brikman, 2016): 19

 Shared storage for state files. To be able to use Terraform to update your infrastructure, 20

each of your team members needs access to the same Terraform state files. That means 21

you need to store those files in a shared location. 22

 Locking state files. As soon as data is shared, you run into a new problem: locking. 23

Without locking, if two team members are running Terraform at the same time, you can 24

run into race conditions as multiple Terraform processes make concurrent updates to the 25

state files, leading to conflicts, data loss, and state file corruption. 26

 Isolating state files. When making changes to your infrastructure, it’s a best practice to 27

isolate different environments. For example, when making a change in a testing or 28

staging environment, you want to be sure that there is no way you can accidentally break 29

production. 30

The above issues need to be addressed in-house when building the automation of the 31

processes that make up the infrastructure. However, the main drawback of Terraform in the 32

context of Cloud Agnostic automation is that it abstracts definitions in a poor way. In essence, 33

Terraforms definitions are often a one-to-one rewriting of the properties issued by the cloud 34

providers' native APIs. Thus, the only thing we gain relative to the native API is that the multi-35

cloud definition is given a common form of notation and a central tool responsible for 36

orchestration. Terraform lacks proper abstraction mechanisms to hide implementation details 37

by exposing a simple API. 38

176 I.J. Jóźwiak, P.P. Jóźwiak, K. Zatwarnicki

A separate problem with Terraform is the poor support for deploying applications to 1

a pre-created infrastructure. This is done by injecting initialization scripts onto the virtual 2

machine. The script is usually written as a shell script, leading to a mix of declarative 3

infrastructure definition and imperative initialization scripts. 4

7. Kubernetes cluster as resource orchestration and execution environment 5

The decision to choose a cloud provider is a very difficult one. On the one hand, the use of 6

native solutions available from a given provider is very tempting due to the relatively high ease 7

of implementation and the predictability of costs at the time of the decision. On the other hand, 8

a strong attachment to a provider's specific solutions raises concerns about over-dependence, 9

which may result in no easy path out in the future to an environment offering better value for 10

money. 11

Many companies, for this reason, are opting for a certain compromise to loosen their strong 12

ties to a single cloud, choosing the Kubernetes computing cluster environment as their primary 13

runtime tool. The use of Kubernetes as a Platform as a Service (PaaS) provides a universal 14

abstraction layer to build independence and loosens many of the strong ties to the native 15

services of a given provider. Each of the major cloud service providers mentioned has 16

Kubernetes cluster as a PaaS offer. In the AWS cloud, this is the Elastic Kubernetes Service 17

(EKS), Microsoft provides it in the form of Azure Kubernetes Service (AKS) while Google 18

provides it as Google Kubernetes Service (GKE). 19

Kubernetes cluster is a portable, extensible open-source software platform for managing 20

tasks and services running in Docker containers. Most importantly, Kubernetes works with 21

declarative configuration and automation expressed in YAML files called manifests. The state 22

of the environment itself is maintained directly on the cluster itself, thus bypassing many of the 23

problems we encounter when using Terraform. With the requirement to use cloud agnostic 24

definitions, using Kubernetes as an abstraction layer separating us from direct interaction with 25

the cloud is a very welcome solution. On the one hand, our application definitions have one and 26

the same record regardless of the cloud on which the cluster is installed, and on the other hand, 27

it is Kubernetes in the form of the relevant drivers provided by the operator that knows how to 28

scale the demand for virtual machines (VMs) or other specific resources. 29

However, the problem arises when there is a need to provision resources that Kubernetes 30

itself does not support, e.g. registering a sub domain, running a database, etc. Pure Kubernetes 31

is mainly an execution environment where the orchestration of the necessary resources is 32

severely limited. The following chapter presents a solution to this problem, which extends 33

Kubernetes' capabilities theoretically in an unlimited way. 34

Current Infrastructure as a Code automation trends… 177

7.1. Extending Kubernetes functionality with Crossplane 1

The developers of Kubernetes have predicted the possibility of extending functionality 2

through so-called Custom Resources (CR) (Kubernetes, 2023). Custom Resource is 3

an extension to the Kubernetes API that is not necessarily available in the default Kubernetes 4

installation. It represents a customization for a specific Kubernetes installation. However, 5

many core Kubernetes features are now built using custom resources, making Kubernetes more 6

modular (Kubernetes, 2023). CRs can appear and disappear in a running cluster through 7

dynamic registration, and cluster administrators can update CRs independently of the cluster 8

itself. A CR is simply customized structured data. In order to perform additional operations on 9

it, there must be a process to enforce it. This process is the Custom Controller, which performs 10

programmed actions based on the CR. Custom Controller is a specialized Kubernetes Pod, that 11

is observing changes in CRs and respond accordingly to them. 12

The aforementioned functionality is the basis of the Crossplane tool (Crossplane, 2023). 13

The purpose of Crossplane is to extend the Kubernetes cluster with the ability to provision any 14

resources outside the cluster. This is all done using the same YAML manifests when configuring 15

the environment. Crossplane provides extensions to Kubernetes Custom Resources, while also 16

providing the corresponding Custom Controllers responsible for executing these definitions. 17

The advantage of this solution lies in a unified way of deploying the application and 18

instantiating the resources for that application. One common YAML manifest format combines 19

both tasks into a single process. Previously described tools unified writing in only one of these 20

areas: deployment or resource orchestration. Kubernetes with Crossplane combines both areas 21

into one consistent mechanism based on YAML manifests. Let's take a look at the principles of 22

Crossplane. 23

Crossplane introduces multiple building blocks that enable you to provision, compose, 24

and consume infrastructure using the Kubernetes API. These individual concepts work together 25

to allow for powerful separation of concern between different personas in an organization, 26

meaning that each member of a team interacts with Crossplane at an appropriate level of 27

abstraction. 28

The primary concept for extending the Kubernetes API is the Composite Resource 29

Definition (XRD) (Crossplane, 2023). The purpose of the XRD is to define the details of the 30

exposed API, which will then be used for resource provisioning. XRD provides the ability to 31

define a cloud agnostic interface that will be translated into appropriate compositions. In order 32

to be able to transform the XRD into specific resources, Crossplane provides the concept of 33

Composition. This is an entity whose task is to define particular resource orchestration for given 34

XRD. Composition is executed after the user provides proper Claim for particular XRD. 35

Each XRD can have multiple Compositions, where each Composition can be responsible for 36

handling different clouds. A Composition uses the appropriate Providers to perform the 37

operation. Providers are implemented by open-source teams as well as by many companies, 38

178 I.J. Jóźwiak, P.P. Jóźwiak, K. Zatwarnicki

including cloud providers. Often, Providers are using internally native APIs, like SDK or CLI 1

prepared by cloud vendor. The task of the Provider is to expose the corresponding API and their 2

execution mechanisms in the form of a Pod running in Kubernetes (Crossplane, 2023). 3

Let's look at an example in which we will build a Cloud Agnostic API for network 4

provisioning across two clouds: AWS and Azure. Both clouds provide a very similar concept, 5

however the implementation differs between the two. For example, Azure requires a Resource 6

Group to be indicated for entities being created which is not the case in AWS. We want to 7

encapsulate these differences in a single consistent definition of XRD. A basic, very simple 8

example is shown in Table 3. The code on the left defines an API scheme for networking. 9

It assumes the existence of three specific properties {region, addressSpace, subnetCidr}. 10

The right-hand side of Table 3 shows an example of the Claim that is used to create a network 11

by end user. Claim provides information from the user as to what environmental parameters he 12

is interested in. It is an API prepared for the end user. All implementation details are not visible. 13

In the presented example, the user indicates only three available settings. 14

Table 3. 15
Example XRD definition of API for subnet provisioning with corresponding Claim for 16

a resource 17

XRD definition API for networking

apiVersion: apiextensions.crossplane.io/v1

kind: CompositeResourceDefinition

metadata:

 name: xnetworks.example.com

spec:

 group: example.com

 names:

 kind: XNetwork

 plural: xnetworks

 versions:

 - name: v1alpha1

 served: true

 referenceable: true

 schema:

 openAPIV3Schema:

 type: object

 properties:

 spec:

 type: object

 properties:

 region:

 type: string

 addressSpace:

 type: string

 subnetCidr:

 type: string

Claim for network

apiVersion: example.com/v1alpha1

kind: XNetwork

metadata:

 name: exampleNet

spec:

 compositionSelector:

 matchLabels:

 cloud: aws

 region: eu-central-1

 addressSpace: 10.40.0.0/16

 subnetCidr: 10.40.32.0/19

Source: own work. 18

The above Claim, shown in table 3 is executed by the corresponding Composition. 19

Since the example supports two clouds then through the compositionSelector field inside the 20

Claim we indicate which composite is to be used to create the resource. The example 21

Compositions code is shown in table 4. 22

Current Infrastructure as a Code automation trends… 179

Table 4. 1
Example of two compositions for subnetwork XRD covering AWS and Azure clouds 2

XRD definition API for networking

apiVersion: apiextensions.crossplane.io/v1

kind: Composition

metadata:

 name: azure.xnetworks.example.com

 labels:

 cloud: azure

spec:

 compositeTypeRef:

 apiVersion: exaple.com/v1alpha1

 kind: XNetwork

 resources:

 - name: resource-group

 base:

 apiVersion: azure.upbound.io/v1beta1

 kind: ResourceGroup

 metadata:

 name: resource-group

 patches:

 - type: FromCompositeFieldPath

 fromFieldPath: spec.region

 toFieldPath: spec.forProvider.region

 - name: vnet

 base:

 apiVersion: network.azure.upbound.io/v1beta1

 kind: VirtualNetwork

 spec:

 forProvider:

 resourceGroupNameSelector:

 matchControllerRef: true

 patches:

 - type: FromCompositeFieldPath

 fromFieldPath: spec.region

 toFieldPath: spec.forProvider.location

 - type: FromCompositeFieldPath

 fromFieldPath: spec.addressSpace

 toFieldPath: spec.forProvider.addressSpace[0]

 - name: subnet

 base:

 apiVersion: network.azure.upbound.io/v1beta1

 kind: Subnet

 spec:

 forProvider:

 resourceGroupNameSelector:

 matchControllerRef: true

 virtualNetworkNameSelector:

 matchControllerRef: true

 patches:

 - type: FromCompositeFieldPath

 fromFieldPath: spec.subnetCidr

 toFieldPath: >-

 spec.forProvider.addressPrefixes[0]

Subnet Composition for Azure

apiVersion: apiextensions.crossplane.io/v1

kind: Composition

metadata:

 name: aws.xnetworks.example.com

 labels:

 cloud: aws

spec:

 compositeTypeRef:

 apiVersion: exaple.com/v1alpha1

 kind: XNetwork

 resources:

 - name: vpc

 base:

 apiVersion: ec2.aws.crossplane.io/v1beta1

 kind: VPC

 patches:

 - type: FromCompositeFieldPath

 fromFieldPath: spec.region

 toFieldPath: spec.forProvider.region

 - type: FromCompositeFieldPath

 fromFieldPath: spec.addressSpace

 toFieldPath: spec.forProvider.cidrBlock

 - name: subnet

 base:

 apiVersion: ec2.aws.crossplane.io/v1beta1

 kind: Subnet

 spec:

 forProvider:

 vpcIdSelector:

 matchControllerRef: true

 patches:

 - type: FromCompositeFieldPath

 fromFieldPath: spec.region

 toFieldPath: spec.forProvider.region

 - type: FromCompositeFieldPath

 fromFieldPath: spec.subnetCidr

 toFieldPath: spec.forProvider.cidrBlock

Source: own work. 3

 4

180 I.J. Jóźwiak, P.P. Jóźwiak, K. Zatwarnicki

Note that the XRD hide the programming details of how to provision individual resources. 1

The abstract XRD presented for networking is very concise and readable. Its implementation 2

translates differently on different clouds. In the case of AWS, two resources will be created: 3

Virtual Private Network (VPC) and Subnet inside the VPC. Azure requires three entities to 4

achieve the same functionality. Firstly, we need to create a Resource Group (RG), in which we 5

then place a Virtual Network (VNet) and one Subnet. All resources are listed in the resources 6

section of the Composition. Parameter values supplied by the user from Claim are rewritten by 7

the patches sections. The presented patches are a small sample of the possibilities offered by 8

this mechanism. 9

The Composite itself indicates what type it implements in the compositeTypeRef field. 10

Both compositions shown indicate the same XNetwork type. The final indication of which 11

Composition is to be executed by the Crossplane is done by appropriately labelling it in the 12

metadata section. 13

In figure 1 is presented a conceptual diagram showing the relationship between the 14

Crossplain components. The DevOps team provides an XRD to the Kubernetes cluster 15

describing the APIs available to end users and a set of Compositions that define in detail how 16

the APIs are to be orchestrated. In the diagram from Fig. 1, the DevOps team has provided one 17

XRD and two Compositions, using two different Providers, Azure and AWS. The respective 18

Azure and AWS Providers were also previously installed on the cluster. 19

Consumer of a service deploys to Kubernetes Claim manifest with specification for 20

requested service. In the example from Fig. 1, the Claim points to the AWS environment. 21

Thus, the request will be handled by the respective Provider, which, based on the Claim, 22

will provision the required resources in the AWS cloud. At the same time, the Composition 23

provides information on which applications are to be installed in the Kubernetes cluster itself. 24

 25

Figure 1. Diagram presenting the conceptual relations between Crossplain components in a Kubernetes 26
cluster 27

Of course, we are in no way restricted to mixing resources from different clouds in a single 28

Composition. 29

Current Infrastructure as a Code automation trends… 181

Each resource described in the Composition throughout its life cycle has a corresponding 1

record on the Kubernetes cluster. This record stores the required state of the resource. This state 2

is continuously monitored by Crossplane providers and, if differences are detected between the 3

resource and its description in the cluster, the appropriate steps are executed. Through the 4

Kubernetes cluster, Crossplane manages the entire life cycle of resources created in and outside 5

the cluster. Removing Claim from the cluster also removes any resources created by it. 6

The example above illustrates how Crossplane extends Kubernetes functionality to create 7

resources outside the cluster itself. This provides a uniform record of infrastructure definition 8

and application deployment via YAML manifests. A state in which an API has been exposed 9

that enables the application to run as a uniform record of the resource list and application 10

deployment, e.g. in the form of a Helm Chart Release, is desirable. The orchestration of all 11

elements is overseen by internal mechanisms that manage the lifecycle of Kubernetes objects. 12

Thus, we gain a mechanism to prevent manual changes to the infrastructure, which is one of 13

the requirements for well-designed automation of execution environments. 14

8. Conclusions 15

In the article, we provided an overview of the tools available to automate infrastructure. 16

The IaaC problem is not an easy one to solve, particularly if you do not want to be strongly tied 17

to a specific cloud provider. Achieving Cloud Agnostic status is much more difficult than 18

automating within a single provider. In this case, it is not possible to design an effective 19

automation process using the tools that the cloud provider provides. This is because these tools 20

only work within a given provider, so we are forced to duplicate automation by specializing it 21

based on different tools. 22

Tools that can automate across multiple cloud providers simultaneously may provide 23

a solution to this problem. In particular, Terraform is a good solution. While Terraform provides 24

a common format for declaring resources across multiple clouds simultaneously, it does not 25

provide the ability to hide implementation details. In addition, Terraform was primarily 26

developed for the purpose of automating infrastructure orchestration, and thus provides poor 27

mechanisms for installing applications on the referenced infrastructure. 28

The most mature solution that meets the requirement for automation in isolation from the 29

specifics of cloud providers' gives Kubernetes in combination with Crossplane. 30

Pure Kubernetes successfully provides mechanisms for automating application deployment. 31

In fact, it was primarily developed for such purposes. The only requirement to run a given 32

application on a Kubernetes cluster is to package the application in an appropriate Docker 33

container. Enriching Kubernetes with Crossplane extends the functionality of the cluster with 34

the possibility of interacting with the external environment. Thus, we get a consistent, central 35

182 I.J. Jóźwiak, P.P. Jóźwiak, K. Zatwarnicki

place where we manage the application as well as the infrastructure in a uniform way. 1

All automation is written in the form of YAML manifests. The DevOps team simultaneously 2

works on both infrastructure and deployment declarations, publishing the whole solution as 3

a corresponding package. The definition itself is stored on the Kubernetes cluster providing 4

a unified API. Deployment details are hidden behind the corresponding Compositions, 5

providing the user only with a simplified XRD. At the moment presented solution seems to be 6

most mature design when Cloud Agnosticism is key point on a list of requirements. 7

References 8

1. Azad, N., Hyrynsalmi, S. (2023). DevOps critical success factors — A systematic literature 9

review. Information and Software Technology, vol. 157, Available online 10

https://doi.org/10.1016/j.infsof.2023.107150, 15.04.2023. 11

2. Azure Command Line Interface - overview (2023). Retrieved from: 12

https://learn.microsoft.com/en-us/cli/azure/, 15 April 2023. 13

3. Azure/azure-sdk repository (2023). Retrieved from: https://github.com/Azure/azure-sdk, 14

15 April 2023. 15

4. Brikman, Y. (2016). How to manage Terraform state. A guide to file layout, isolation, and… 16

Gruntwork. Retrieved from: https://blog.gruntwork.io/how-to-manage-terraform-state-17

28f5697e68fa, 15 April 2023. 18

5. CISO Report(2023). Observability and security convergence. Dynatrace 2023. Retrieved 19

from: https://www.dynatrace.com/info/ciso-report/, 3 April 2023. 20

6. Command Line Interface – AWS CLI (2023). Retrieved from: https://aws.amazon.com/cli/, 21

15 April 2023. 22

7. Copado (2022). Cloud Agnostic vs Cloud Native: Developing a Hybrid Approach. 23

Retrieved from: https://www.copado.com/devops-hub/blog/cloud-agnostic-vs-cloud-24

native-developing-a-hybrid-approach, 15.04.23. 25

8. Crossplain Concepts (2023). Retrieved from: https://docs.crossplane.io/v1.12/concepts/, 26

15 April 2023. 27

9. Developer Tools - SDKs and Programming Toolkits for Building on AWS (2023). 28

Retrieved from: https://aws.amazon.com/developer/tools/, 15 April 2023. 29

10. Google Cloud SDK - Libraries and Command Line Tools (2023). Retrieved from: 30

https://cloud.google.com/sdk, 15 April 2023. 31

11. Install the gcloud CLI (2023). Retrieved from: https://cloud.google.com/sdk/docs/install, 32

15 April 2023. 33

12. Kim, G., Humble, J., Debois, P., Willis, J. (2016). The DevOps Handbook. Portland: 34

IT Revolution. 35

Current Infrastructure as a Code automation trends… 183

13. Kubernetes Custom Resources (2023). Retrieved from: https://kubernetes.io/docs/concepts/ 1

extend-kubernetes/api-extension/custom-resources/, 15 April 2023. 2

14. Loschwitz, M. (2014). Choosing between the leading open source configuration managers. 3

Admin Network & Security. Lawrence, KS, USA: Linux New Media USA LLC. 4

15. ScriptRock (2015). Declarative v. Imperative Models for Configuration Management: 5

Which Is Really Better? Scriptrock.com. Archived from the original on 31 March 2015. 6

Retrieved from: https://web.archive.org/web/20150331062438/https://www.scriptrock. 7

com/blog/articles/declarative-vs.-imperative-models-for-configuration-management, 8

1.05.2023. 9

