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Purpose: The goal of the paper is to analyze the main features, benefits and problems with the 7 

business analytics usage. 8 

Design/methodology/approach: Critical literature analysis. Analysis of international literature 9 

from main databases and polish literature and legal acts connecting with researched topic.  10 

Findings: The paper explores the main concepts of business analytics, including descriptive, 11 

real-time, diagnostic, predictive, and prescriptive analytics. Each stage of development builds 12 

upon the previous one, addressing specific needs in data analysis and decision-making.  13 

The paper also presents a detailed comparison of the five types of business analytics, 14 

showcasing their unique characteristics, techniques, and applications. Understanding these 15 

differences helps organizations select the appropriate analytics type to suit their requirements 16 

and drive success. As technology and data processing capabilities advance, business analytics 17 

continues to evolve. Embracing the power of data and analytics grants organizations  18 

a competitive advantage, unlocking opportunities and driving innovation. Integrating analytics 19 

into decision-making processes is essential for thriving in a data-driven world, ensuring 20 

sustained growth and success in an ever-changing marketplace. 21 

Originality/value: Detailed analysis of all subjects related to the problems connected with the 22 

prospective analytics. 23 

Keywords: Industry 4.0; diagnostic analytics, business analytics, data analysis. 24 

Category of the paper: literature review. 25 

1. Introduction  26 

Business analytics is the practice of utilizing data analysis and statistical methods to gain 27 

valuable insights and make informed business decisions. It involves the exploration, 28 

examination, interpretation, and visualization of data from various sources to identify trends, 29 

patterns, and correlations that can drive strategic planning and operational improvements 30 
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(Wolniak, 2016; Czerwińska-Lubszczyk et al., 2022; Drozd, Wolniak, 2021; Gajdzik, Wolniak, 1 

2021, 2022; Gębczyńska, Wolniak, 2018, 2023; Grabowska et al., 2019, 2020, 2021). 2 

The main objective of business analytics is to extract meaningful and actionable information 3 

from data, enabling organizations to make data-driven decisions, optimize processes, enhance 4 

efficiency, and gain a competitive edge. By leveraging historical and real-time data, businesses 5 

can better understand their operations, customer behavior, market trends, and other critical 6 

factors that influence their performance. 7 

The goal of the paper is to analyze the main features, benefits and problems with the 8 

business analytics usage.  9 

2. Business analytics – main concepts 10 

Business analytics is the systematic application of statistical and quantitative methods to 11 

explore and interpret data, providing valuable insights that aid in making data-driven decisions 12 

to improve business performance and achieve strategic goals (Hurwitz et al., 2015). Business 13 

analytics also refers to the process of analyzing data from various sources using statistical and 14 

computational techniques to uncover patterns, trends, and correlations (Sułkowski, Wolniak, 15 

2015, 2016, 2018; Wolniak, Skotnicka-Zasadzień, 2008, 2010, 2014, 2018, 2019, 2022; 16 

Wolniak, 2011, 2013, 2014, 2016, 2017, 2018, 2019, 2020, 2021, 2022; Gajdzik, Wolniak, 17 

2023; Wolniak, 2013, 2016; Hys, Wolniak, 2018). The insights gained from this analysis help 18 

organizations make informed decisions and optimize their operations for greater efficiency and 19 

competitiveness. 20 

Business analytics empowers organizations to transform raw data into valuable knowledge, 21 

enabling them to make data-driven decisions that positively impact their overall performance 22 

and success. 23 

Business analytics plays a crucial role in aiding decision-makers to (Cam et al., 2021): 24 

 Identify opportunities for growth and improvement. 25 

 Optimize operational efficiency and resource allocation. 26 

 Understand customer behavior and preferences. 27 

 Mitigate risks and identify potential threats. 28 

 Monitor and evaluate the performance of various initiatives and strategies. 29 

We can divide business analytics into five following stages (Hwang et al.; Hurwitz et al., 30 

2015; Lawton, 2019; Charles et al., 2023; Scappini, 2016; Peter et al., 2023): 31 

  32 
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 Descriptive analytics involves the examination and interpretation of historical data to 1 

gain insights into past performance and understand what has happened in a business. 2 

This type of analytics focuses on summarizing and presenting data in a meaningful way, 3 

often using data visualization tools like charts, graphs, and dashboards to provide a clear 4 

and concise overview of key performance indicators (KPIs) and trends. 5 

 Real-time analytics, also known as streaming analytics or instant analytics,  6 

is the process of analyzing data as it is generated or received, without any delay.  7 

It enables organizations to monitor and respond to events, transactions, and data streams 8 

in real time. This type of analytics is especially useful in dynamic and time-sensitive 9 

environments, such as financial markets, supply chain management, and online 10 

customer interactions. 11 

 Diagnostic analytics goes beyond descriptive analytics by seeking to understand why 12 

certain events or patterns occurred in the data. It involves analyzing historical data to 13 

identify the root causes of specific outcomes or anomalies. By investigating past 14 

performance and understanding contributing factors, businesses can gain insights into 15 

how to improve processes and avoid potential issues in the future. 16 

 Predictive analytics involves the use of historical data and statistical algorithms to make 17 

predictions about future events or outcomes. By identifying patterns and relationships 18 

in the data, predictive analytics helps organizations anticipate potential scenarios and 19 

trends. This enables them to proactively plan and make more informed decisions,  20 

such as predicting customer behavior, demand for products, or financial performance. 21 

 Prescriptive analytics takes data analysis to the next level by recommending specific 22 

actions to optimize outcomes based on the insights gained from descriptive, diagnostic, 23 

and predictive analytics. It uses advanced algorithms and decision models to determine 24 

the best course of action under different circumstances. Prescriptive analytics provides 25 

actionable recommendations that guide decision-makers in maximizing efficiency, 26 

minimizing risks, and achieving strategic objectives. 27 

3. Evolution of business analytics 28 

Descriptive analytics, as the initial stage of business analytics, focused on examining 29 

historical data to summarize past performance and identify trends. Organizations relied on batch 30 

processing and traditional data analysis methods to gain insights from historical datasets. 31 

However, as the pace of business and the need for faster decision-making increased,  32 

a new demand emerged for real-time insights. 33 

  34 
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The evolution to real-time analytics was driven by advancements in technology and data 1 

processing capabilities. Organizations began to adopt technologies like stream processing and 2 

complex event processing (CEP) to analyze data as it was generated or received in real-time. 3 

This shift allowed them to monitor events, transactions, and data streams as they happened, 4 

enabling immediate responses to emerging trends or critical situations. 5 

Real-time analytics became essential in industries where timeliness and quick reactions 6 

were critical, such as financial markets, online retail, and fraud detection. With the ability to 7 

process and analyze data in real-time, organizations gained a competitive advantage, as they 8 

could identify opportunities and respond to threats faster than their competitors (Sharma et al., 9 

2020). 10 

The transition from descriptive analytics to real-time analytics was driven by the recognition 11 

that historical insights alone were insufficient to keep up with the rapidly changing business 12 

landscape. Organizations realized the need to leverage the power of real-time data to make more 13 

informed and agile decisions, ultimately leading to the evolution of business analytics to the 14 

next stage of development (Hwang et al., 2017; Hurwitz et al., 2015; Lawton, 2019; Charles  15 

et al., 2023; Scappini, 2016; Peter et al., 2023). 16 

As organizations began leveraging real-time analytics to gain immediate insights,  17 

they recognized the need to go beyond simply reacting to events and delved deeper into 18 

understanding the underlying causes of specific outcomes. This realization led to the evolution 19 

from real-time analytics to diagnostic analytics (Peter et al., 2023). 20 

With real-time analytics in place, organizations could quickly identify anomalies and 21 

emerging trends. However, the next logical step was to investigate the reasons behind these 22 

patterns. Diagnostic analytics emerged as the stage where historical data was thoroughly 23 

analyzed to identify root causes, contributing factors, and correlations. By performing drill-24 

down analyses, root cause analysis, and other investigative techniques, organizations could 25 

pinpoint the factors that led to specific events or performance outcomes. Diagnostic analytics 26 

provided a deeper understanding of the relationships between different variables and helped 27 

identify potential bottlenecks or inefficiencies in processes. 28 

The evolution to diagnostic analytics represented a shift from reactive decision-making to 29 

a more proactive approach. By understanding the underlying causes of both positive and 30 

negative outcomes, organizations could take corrective actions, optimize processes, and make 31 

data-driven improvements to their operations (Hurwitz et al., 2015). 32 

Building on the insights gained from diagnostic analytics, organizations sought to move 33 

from understanding past events to anticipating future scenarios. The evolution from diagnostic 34 

analytics to predictive analytics was driven by the desire to leverage historical data and patterns 35 

to make informed predictions. With the historical data already analyzed during the diagnostic 36 

stage, organizations had the groundwork to develop predictive models. Advanced statistical 37 

algorithms, machine learning techniques, and time series forecasting were employed to identify 38 

patterns and relationships in the data that could be used to forecast future trends. 39 
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Predictive analytics enabled organizations to anticipate potential outcomes, market trends, 1 

customer behavior, and demand for products or services. This forward-looking approach 2 

allowed businesses to proactively plan and allocate resources, optimize inventory management, 3 

and strategize marketing campaigns based on anticipated changes in the market. The shift to 4 

predictive analytics empowered organizations to move beyond reactive and proactive decision-5 

making to predictive decision-making. Armed with data-driven predictions, they could be better 6 

prepared for the future and adapt their strategies to potential changes, thereby gaining  7 

a competitive edge in their respective industries. 8 

The transition from predictive analytics to prescriptive analytics marks the final and most 9 

advanced stage in the evolution of business analytics. While predictive analytics focused on 10 

forecasting future outcomes, organizations recognized the need to take it a step further and 11 

move from predicting what might happen to determining the best course of action to achieve 12 

desired outcomes. This shift led to the development of prescriptive analytics (Jonek-Kowalska, 13 

Wolniak, 2021, 2022; Jonek-Kowalska et al., 2022; Kordel, Wolniak, 2021; Orzeł, Wolniak, 14 

2021, 2022, 2023; Rosak-Szyrocka et al., 2023; Gajdzik et al., 2023; Ponomarenko et al., 2016; 15 

Stawiarska et al., 2020, 2021; Stecuła, Wolniak, 2022; Olkiewicz et al., 2021). 16 

Prescriptive analytics builds upon the insights gained from descriptive, real-time, 17 

diagnostic, and predictive analytics to recommend specific actions or decisions to optimize 18 

results. By using optimization models, decision trees, simulation techniques, and machine 19 

learning algorithms, organizations could evaluate various scenarios and potential outcomes 20 

(Hwang et al., 2017). 21 

Prescriptive analytics considers multiple variables, constraints, and objectives to arrive at 22 

the best possible course of action. It enables decision-makers to weigh the potential risks and 23 

rewards of different strategies and make well-informed choices based on data-driven insights. 24 

With prescriptive analytics, organizations can answer questions such as "What should we do?" 25 

and "How can we achieve our goals most effectively?" It empowers businesses to optimize their 26 

resources, streamline processes, maximize profitability, and make strategic decisions that align 27 

with their long-term objectives (Greasley, 2019). 28 

In practice, prescriptive analytics finds applications in complex decision-making processes, 29 

such as supply chain optimization, resource allocation, pricing strategies, and personalized 30 

recommendations in e-commerce. For instance, prescriptive analytics can recommend the most 31 

cost-efficient distribution routes for a logistics company or suggest personalized product offers 32 

based on individual customer preferences. Prescriptive analytics represents the pinnacle of data-33 

driven decision-making, enabling organizations to gain a competitive advantage by making 34 

precise, well-informed choices in a dynamic and rapidly changing business landscape. By fully 35 

embracing prescriptive analytics, businesses can optimize their operations, enhance customer 36 

experiences, and position themselves for sustained success in the ever-evolving marketplace 37 

(Wolniak, Sułkowski, 2015, 2016; Wolniak, Grebski, 2018; Wolniak et al., 2019, 2020; 38 

Wolniak, Habek, 2015, 2016; Wolniak, Skotnicka, 2011; Wolniak, Jonek-Kowalska, 2021; 39 

2022). 40 
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4. Comparison of business analytics types 1 

In table 3, we compare five types of business analytics: Descriptive Analytics, Real-time 2 

Analytics, Diagnostic Analytics, Predictive Analytics, and Prescriptive Analytics. Each type is 3 

described based on its definition, focus, time perspective, purpose, techniques/models used,  4 

and application examples. 5 

Descriptive Analytics involves the examination and interpretation of historical data to gain 6 

valuable insights into past performance and understand what has happened in a business or 7 

operational context. By summarizing data, identifying patterns, and presenting key performance 8 

indicators and trends, descriptive analytics offers a clear and concise overview of historical 9 

events, enabling stakeholders to comprehend past outcomes and assess the effectiveness of their 10 

strategies and initiatives. 11 

In contrast, Real-time Analytics focuses on the analysis of data as it is generated or received, 12 

without any delay. This dynamic approach allows organizations to monitor and respond to 13 

events, transactions, and data streams in real-time. By leveraging complex event processing and 14 

stream processing techniques, real-time analytics empowers decision-makers to promptly 15 

detect emerging trends, identify anomalies, and react swiftly to changing market conditions or 16 

critical situations. 17 

Table 1.  18 
Comparison of five types of business analytics 19 

Factor 
Descriptive 

Analytics 

Real-time 

Analytics 

Diagnostic 

Analytics 

Predictive 

Analytics 

Prescriptive 

Analytics 

Definition 

Examination and 

interpretation of 

historical data. 

Analysis of 

data as it is 

generated or 

received, 

without delay. 

Understanding 

the reasons 

behind past 

events or 

patterns. 

Using 

historical data 

and statistical 

algorithms to 

predict future 

outcomes. 

Recommending 

specific actions to 

optimize 

outcomes. 

Focus 
Past performance 

and trends. 

Immediate 

events and 

streams. 

Root causes of 

outcomes. 

Future trends 

and 

possibilities. 

Best course of 

action. 

Time 

Perspective 
Historical data. 

Real-time 

data. 

Historical 

data. 

Future 

predictions. 
Future predictions. 

Purpose 

Summarize data, 

identify patterns, 

and provide a 

clear overview of 

key performance 

indicators and 

trends. 

Monitor and 

respond to 

events in real-

time, enabling 

quick 

decision-

making in 

dynamic and 

time-sensitive 

contexts. 

Investigate 

past 

performance to 

identify the 

factors that 

contributed to 

specific 

outcomes or 

anomalies. 

Anticipate 

potential 

scenarios and 

trends, 

allowing 

proactive 

planning and 

decision-

making. 

Provide actionable 

advice based on 

insights gained 

from other types 

of analytics to 

achieve desired 

objectives. 

 20 

  21 
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Cont. table 1. 1 

Techniques/ 

Models 

Data 

visualization, 

reporting, 

descriptive 

statistics. 

Stream 

processing, 

complex event 

processing 

(CEP). 

Drill-down 

analysis, root 

cause analysis. 

Regression 

analysis, time 

series 

forecasting, 

machine 

learning 

models. 

Optimization 

models, decision 

trees, simulation 

models. 

Application 

Examples 

Monthly sales 

reports, customer 

segmentation, 

website traffic 

analysis. 

Fraud 

detection, 

stock market 

analysis, real-

time website 

monitoring. 

Customer 

churn analysis, 

identifying 

reasons for a 

decrease in 

sales. 

Demand 

forecasting, 

predictive 

maintenance, 

stock price 

prediction. 

Supply chain 

optimization, 

resource 

allocation, 

dynamic pricing 

strategies. 

Data Sources 

Structured and 

unstructured data 

from various 

sources. 

Diverse data 

streams, 

sensors, social 

media, etc. 

Structured and 

unstructured 

historical data. 

Historical 

data from 

various 

sources. 

Data from various 

sources, integrated 

and processed for 

analysis. 

Decision-

Making Impact 

Informative 

insights for 

informed 

decision-making. 

Immediate 

insights for 

real-time 

decision-

making. 

Identifying 

areas for 

improvement 

and 

optimization. 

Anticipate 

risks and 

opportunities 

for better 

strategic 

planning. 

Guiding optimal 

decisions to 

achieve desired 

outcomes. 

Data Volume 

and Velocity 

Handling larger 

historical 

datasets. 

Handling real-

time data 

streams, fast 

processing. 

Working with 

historical data 

with varying 

volume. 

Managing 

large datasets 

for future 

predictions. 

Handling data to 

recommend 

decisions for 

future outcomes. 

Industry 

Applications 

Applicable 

across various 

industries. 

Various 

industries and 

sectors. 

Widely used in 

diverse 

business 

sectors. 

Commonly 

used across 

industries for 

predictive 

insights. 

Applied in various 

industries for 

decision 

optimization. 

Data 

Integration 

Data integrated 

from multiple 

sources for 

analysis. 

Real-time data 

integration for 

immediate 

insights. 

Data 

integration for 

analyzing 

historical 

performance. 

Data 

integration 

for historical 

data analysis. 

Integration of data 

to derive 

actionable 

recommendations. 

Time Horizon 

Historical view 

of performance 

over a specific 

period. 

Immediate 

view of 

ongoing 

events and 

their impact. 

Historical 

view to 

understand 

past 

performance. 

Future-

oriented view 

for 

forecasting 

long-term 

outcomes. 

Future-oriented 

view for 

determining 

optimal actions. 

Data 

Exploration 

Understanding 

past trends and 

performance 

patterns. 

Identifying 

emerging 

trends and 

anomalies in 

real-time. 

Exploring 

historical data 

for potential 

insights. 

Uncovering 

hidden 

patterns and 

relationships 

in data. 

Evaluating 

potential scenarios 

for decision-

making. 

Implementation 

Complexity 

Typically less 

complex due to 

historical data 

analysis. 

May require 

sophisticated 

real-time data 

processing. 

Can be 

complex, 

depending on 

the factors 

being 

analyzed. 

Requires 

advanced 

statistical 

modeling and 

machine 

learning. 

Involves complex 

optimization 

algorithms and 

simulations. 

 2 

  3 
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Cont. table 1. 1 

Data Storage 

Can be stored in 

databases, data 

warehouses, or 

spreadsheets. 

Real-time data 

may be stored 

in memory or 

temporary 

storage. 

Stored in 

databases or 

data 

warehouses for 

historical 

analysis. 

Stored in 

databases or 

data 

warehouses 

for modeling. 

Utilizes databases 

or specialized 

models to store 

recommended 

actions. 

Data 

Visualization 

Charts, graphs, 

and reports to 

summarize 

historical data. 

Real-time 

dashboards 

and visualiza-

tions for 

ongoing 

events. 

Visual 

representations 

to explain past 

performance 

patterns. 

Visualizations 

to display 

predictive 

outcomes and 

trends. 

Visualizations to 

present 

recommended 

actions and their 

impacts. 

Source: Authors own work on the basis of: (Hurwitz et al., 2015; Lawton, 2019; Charles et al., 2023, 2 
Scappini, 2016, Peter et al., 2023). 3 

Diagnostic Analytics goes beyond descriptive analytics by seeking to understand why certain 4 

events or patterns occurred in the data. It involves in-depth analysis of historical data to identify 5 

the root causes of specific outcomes or issues. By investigating past performance and 6 

uncovering contributing factors, diagnostic analytics provides crucial insights that enable 7 

organizations to gain a deeper understanding of their operations and identify areas for 8 

improvement or optimization. 9 

Predictive Analytics harnesses historical data and applies statistical algorithms, machine 10 

learning models, and data mining techniques to predict future outcomes and trends.  11 

By identifying patterns and relationships in the data, predictive analytics allows organizations 12 

to anticipate potential scenarios and make data-driven decisions for better planning and resource 13 

allocation. This forward-looking approach empowers businesses to proactively address 14 

challenges and seize opportunities. 15 

Prescriptive Analytics represents the pinnacle of data-driven decision-making. Building 16 

upon descriptive, diagnostic, and predictive analytics, prescriptive analytics provides actionable 17 

recommendations and guidance on the best course of action under different circumstances.  18 

By utilizing optimization models, decision trees, and simulation techniques, prescriptive 19 

analytics assists decision-makers in optimizing resources, mitigating risks, and achieving 20 

strategic objectives with precision and effectiveness. 21 

By analyzing and understanding the distinct characteristics of each type of business 22 

analytics, organizations can effectively leverage data to gain actionable insights, improve 23 

operational efficiency, enhance customer experiences, and stay ahead in an increasingly data-24 

driven and competitive landscape. The wide range of analytical techniques and approaches 25 

available empowers businesses to unlock the full potential of their data and make more 26 

informed, strategic decisions that drive success and growth. 27 

  28 
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5. Conclusion 1 

Throughout this paper, we have explored the main concepts of business analytics, including 2 

descriptive, real-time, diagnostic, predictive, and prescriptive analytics. Each stage of 3 

development builds upon the previous one, addressing specific needs and challenges in data 4 

analysis and decision-making. 5 

Descriptive analytics serves as the foundation, offering a historical perspective on 6 

performance and trends. As the need for real-time insights emerged, organizations transitioned 7 

to real-time analytics, enabling swift responses to dynamic events. Recognizing the importance 8 

of understanding the underlying reasons behind outcomes, the evolution continued to diagnostic 9 

analytics, providing deeper insights into root causes. 10 

Predictive analytics emerged as a response to the demand for future-oriented decision-11 

making. By leveraging historical data and advanced algorithms, organizations could anticipate 12 

trends and scenarios, thereby enabling proactive planning and strategic decision-making.  13 

The ultimate stage of prescriptive analytics recommends specific actions to optimize outcomes, 14 

synthesizing insights from previous analytics stages. Prescriptive analytics empowers decision-15 

makers to make precise, well-informed choices, driving efficiency and achieving strategic 16 

objectives. 17 

In this paper, we also presented a detailed comparison of the five types of business analytics 18 

across various factors. Each type possesses unique characteristics, techniques, and applications 19 

that cater to diverse business needs. By understanding these differences, organizations can 20 

select the appropriate analytics type to suit their specific requirements and drive success in their 21 

respective industries. 22 

Business analytics continues to evolve with advancements in technology and data 23 

processing capabilities. As organizations harness the power of data and analytics, they gain  24 

a competitive advantage, unlock hidden opportunities, and drive innovation. The integration of 25 

business analytics into decision-making processes is crucial for organizations seeking to thrive 26 

in a data-driven world, paving the way for sustained growth and success in an ever-evolving 27 

marketplace. 28 

  29 
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