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Purpose: This paper aims at making a comparison of three optimization algorithms – standard 4 

Genetic Algorithm and its two modifications: Extended Compact Genetic Algorithm and 5 

Population-based Incremental Learning.  6 

Design/methodology/approach: To reach the objectives of the paper the solver based on 7 

algorithms was developed. Certain test functions were applied to test them and evaluate their 8 

performance.  9 

Findings: Modifications of Genetic Algorithm reach optimal values faster and more precisely. 10 

Research limitations/implications: Problem of optimization of certain cost functions 11 

frequently occurs in many management problems of organizing the optimal workflow in 12 

organizations. It can be used also in engineering problems of designing optimal devices at 13 

lowest possible cost.  14 

Practical implications: One can optimize function faster using discussed algorithms than by 15 

using standard evolutionary algorithm. 16 

Originality/value: The paper shows results of comparisons of three algorithms, discusses how 17 

tuning meta parameters helps to increase their efficiency and accuracy. 18 

Keywords: optimization, genetic algorithms, applied mathematics. 19 

Category of the paper: research paper. 20 

1. Introduction  21 

In the first half of 18th century one of the most notable mathematicians of all times – 22 

Leonhard Euler wrote that nothing at all takes place in the universe in which some rule of 23 

maximum or minimum does not appear. So, from the beginning of development of modern 24 

science the importance of the task of optimization of functions was well understood.  25 

Many calculus-based methods were developed to deal with this problem. But with the 26 

development of applications of mathematics plenty of functions needed to be optimized but 27 

they did not satisfy conditions for such methods. That being said new approach had to be 28 

developed. Plenty of different numerical methods were developed. They are not perfect,  29 

for they do not necessary provide correct answer at first approach, but after certain 30 
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considerations enable to find local extreme values of some wild functions. Many of such 1 

algorithms are heuristics based on some biological phenomena. The algorithms can be inspired 2 

by e.g., Ant Colony, Beehive or Wolf Pack. In this paper we shall discuss three algorithms 3 

based on central biological theory - Genetic algorithm and its modifications.  4 

The objective of this work is to compare three heuristic algorithms – Evolutionary 5 

Algorithm, Extended Compact Genetic Algorithm and Probability-based Incremental Learning 6 

based on their performance in the task of optimizing test functions. A thorough discussion of 7 

many variants of Evolutionary Algorithms can be found in (Tamilselvi, 2022) and (Vikhar, 8 

2016). Application of variants of EA to engineering problem of optimal design can be found in 9 

(Kieszek et al. 2023) Interesting variant of ECGA using properties of machine-precision 10 

arithmetic can be found in (Satman, Akadal, 2020). Applications of PBIL are depicted in 11 

(Grisales-Noreña et al., 2016). It is even used to optimize nuclear reload (da Silva et al., 2018) 12 

As it was shown, the matter of different variant evolution-based algorithms is still a topic of 13 

active research. To the best of author’s knowledge, no direct comparison of those three 14 

algorithms’ performance has been published. 15 

2. Methods  16 

Population-based optimization heuristics have been perceived as efficient and universal 17 

methods of determining global extremes for a long time. The Evolutionary Algorithm is now 18 

considered a classic population-based heuristic. Despite its indisputable advantages, there are 19 

still attempts to modify it, aimed at increasing accuracy and reducing the number of assessments 20 

of individuals necessary to obtain a solution. The latter feature is particularly important in the 21 

case of optimization of complex problems where the evaluation of a single individual is very 22 

time-consuming. If individuals with low fitness appear relatively often in the population,  23 

their assessment takes time, but does not lead to a solution. Ensuring that low-value individuals 24 

appear infrequently is one way to speed up optimization. 25 

In a large group of population-based algorithms, algorithms using probabilistic models have 26 

recently started to play an increasingly important role. 27 

These are usually methods with a structure very similar to the structure of the evolutionary 28 

algorithm, with the difference that successive generations of individuals/solutions are generated 29 

based on a probabilistic model of the population of promising solutions, and not because of 30 

crossing or mutation of individuals from the current population. 31 

The population of promising solutions is created from individuals selected because of 32 

classical selection (usually a tournament). In such a population there are individuals with  33 

a higher-than-average fitness, and the model built on their basis should promote those features 34 

of the solution that lead to the optimized goal. 35 
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The next generation of solutions is generated in a pseudo-random manner but taking into 1 

account the probabilistic model. This means that in methods of this type, the way the model is 2 

built is responsible for both the very convergence to the extreme and its pace. 3 

In order to take full advantage of the features of the discussed methods, care should be taken 4 

to build the probabilistic model in such a way that, with effective convergence, the ability to 5 

properly search the space is not lost. If the population influences model changes in subsequent 6 

iterations too much, it may lead to rapid unification of the population and improper exploration 7 

of space. On the other hand, changing the model too slowly will make the optimization method 8 

look like a random search. 9 

The way in which the model will be built is crucial from the point of view of this type of 10 

methods. Other elements of the algorithm, such as succession, usually have a classic form 11 

(known from GA) and are used to conduct an iterative process. 12 

In the presented work, two optimization methods using the probabilistic model PBIL - 13 

Population based incremental learning and ECGA - Extended Compact Genetic Algorithm will 14 

be presented. Both methods represent population heuristics belonging to the group of methods 15 

considered as EA modifications. 16 

2.1. Genetic Algorithm 17 

Genetic Algorithm is based on evolutionary mechanisms such as reproduction, 18 

recombination, mutation, and selection. It mimics the development of species that occurs in real 19 

life. That development can be simplified to few observations: 20 

1. There is some population of certain species. 21 

2. Members of population that are best equipped to live in given conditions have the 22 

highest chance of reproduction. 23 

3. Members of population that are not best equipped also have a chance of reproduction, 24 

but on the smaller scale – this fact is important in preserving some genomes that can be 25 

useful in different conditions. 26 

4. Reproduction consists of mixing genomes of parents – it is not just the replication, but 27 

something new.  28 

5. During reproduction some random changes in genome can occur. 29 

To translate the observations some assumptions are needed. To simulate the environment  30 

a function called fitness function will be used. Members of population will be points inside the 31 

domain of the function. Then the algorithm can be expressed as follows: 32 

1. Initialize metaparameters – size of population, probability of crossing, probability of 33 

mutation. 34 

2. Randomly build starting population 𝑃0. 35 

3. Set 𝑡 = 0. 36 

  37 



266 R. Kluger 

4. do{ 1 

a. Evaluate population 𝑃𝑡 according to fitness function. 2 

b. Select best members of 𝑃𝑡 and make temporary population 𝑇𝑡. 3 

c. Use genetic operators (crossing and mutation) on 𝑇𝑡 to produce 𝑂𝑡. 4 

d. Evaluate population 𝑂𝑡 according to fitness function. 5 

e. Produce 𝑃𝑡+1 by applying succession operators to 𝑂𝑡 and 𝑃𝑡. 6 

f. 𝑡 + + 7 

} 8 

while (stop condition). 9 

5. Return the best fitting element in the last population. 10 

The genetic algorithm was applied to continuous, multidimensional problems, so some 11 

genes to evolve had to be identified. In 𝑑-dimensional problems the coordinate in each of 12 

dimensions was treated like one independent gene. For parent vectors 𝒙𝟏⃗⃗⃗⃗ , 𝒙𝟐⃗⃗⃗⃗  of ℝ𝑑 the 13 

following formula has been applied: 14 

�⃗⃗� = 𝒙𝟏⃗⃗⃗⃗ + 𝛏 𝑈(0,1) ∗ (𝒙𝟐⃗⃗⃗⃗ − 𝒙𝟏⃗⃗⃗⃗ ) 15 

where:  16 

�⃗⃗�  is child vector,  17 

𝛏 𝑈(0,1) is random variable vector with uniform distribution, 18 

∗ denotes component-wise multiplication. It is called averaging crossing.  19 

 20 

Another important genetic operation is random mutation of vector 𝒙 which is modelled by 21 

equation: 22 

�⃗⃗� = �⃗⃗� + 𝛏  23 

where:  24 

�⃗⃗�  is child vector,  25 

�⃗⃗�  – parent vector, 26 

𝛏  – random vector of certain distribution. In our case it was modelled by Gaussian distribution. 27 

 28 

Next operator was the selection operator. In the paper the so-called tournament selection 29 

was applied. To do this type of selection certain number of competitors had to be chosen from 30 

the population. Then the best fitting competitor was found, and it was assigned to the child 31 

population. So by number of tournaments the number of elements in child population could be 32 

regulated.  33 

Last operator was the succession operator. To do this elitist succession was applied – current 34 

populations 𝑂𝑡 and 𝑃𝑡 were joined and assigned number of best members was set to child 35 

population. 36 

  37 
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2.2. Population-based Incremental Learning 1 

PBIL is a modified Evolutionary Algorithm using a learning process based on "observation" 2 

of the current population. In the method, at each iteration step it builds new population using 3 

normal distribution with given mean value. In fact, the role of the probabilistic model is played 4 

by a vector 𝜇 = (𝜇1, 𝜇2, … , 𝜇𝑛)whose components 𝜇𝑖 define mean value of the 𝑖-th component 5 

of the generated individual.  6 

It is characteristic of the PBIL algorithm that only the best individual in the current 7 

generation is used to update the μ⃗  vector, which means that the model is based on only one 8 

promising individual, marked �⃗� . The value of the standard deviation in one iteration is the same 9 

for each component. The population for the next iterative step is generated on the basis of the 10 

model adopted in this way. 11 

At the beginning of the iterative process, the components of the vector μ0⃗⃗⃗⃗  are usually 12 

assumed to be random or determined from data about the constraints of the set of feasible 13 

solutions. 14 

In subsequent iterations, the components of the μ⃗  vector are updated as follows: 15 

𝜇𝑗
(𝑡+1)

= (1 − 𝜆) ⋅ 𝜇𝑗
(𝑡) + 𝜆 ⋅ 𝑏𝑗 16 

where:  17 

μ𝑗
(𝑡)

 is the j-th component of the vector μ⃗  in generation 𝑡,  18 

𝑏𝑗 - the component of the promising vector �⃗� ,  19 

λ - the so-called learning rate. 20 

 21 

Individuals of the 𝑡 + 1 population are always drawn considering the current probability 22 

vector. Contrary to the standard genetic algorithm, PBIL does not retain the best individual in 23 

the population, but the specificity of the procedure gives a great chance of selecting it, because 24 

it is on its basis that the probabilistic model is modified. However, it is also possible to use elite 25 

succession, which transfers a certain number of the best individuals from the current population 26 

to the next generation. Drawing the entire population, taking into account the model 27 

(represented by μ⃗ ), gives a good chance of appearing more "good" individuals (from the point 28 

of view of the objective function) of individuals, usually better than in the previous generation. 29 

The value of the learning coefficient λ is a parameter set at the beginning of the iterative 30 

process and affects its course. It should be remembered that its small value slows down the 31 

modification of the model, and its too high value may result in too fast unification of the 32 

population. The λ coefficient should be chosen to balance the ability for targeted exploration 33 

with the ability to exploit space. 34 

Generally speaking, it exchanges genetic operators with probabilistic model. At each 35 

iteration step it builds new population it builds new population using normal distribution with 36 

given mean value. 37 
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The PBIL heuristic pseudocode is as follows: 1 

procedure PBIL: 2 

1. Initialize metaparameters – size of population, the starting mean value vector  3 

𝜇 0 = (𝜇1
(0)

, 𝜇2
(0)

, … , 𝜇𝑛
(0)

) and standard deviation 𝜎0. 4 

2. Randomly build starting population 𝑃0 according to the normal distribution 𝑁(𝜇 0, 𝜎0)5 

  6 

3. Evaluate population 𝑃0 according to fitness function. 7 

4. Set 𝑡 = 0 8 

5. do { 9 

a. Select the best member of 𝑃𝑡(denoted as �⃗� ). 10 

b. Modification of the mean value vector coordinates according to the formula  11 

𝜇𝑗
(𝑡+1)

= (1 − 𝜆) ⋅ 𝜇𝑗
(𝑡) + 𝜆 ⋅ 𝑏𝑗 12 

c. Modification of the standard deviation to 𝜎𝑡+1. 13 

d. Generation of a new individuals according to the model 𝑁(𝜇 𝑡+1, 𝜎𝑡+1)  14 

to produce 𝑂𝑡. 15 

e. Evaluate population 𝑂𝑡 according to fitness function. 16 

f. Produce 𝑃𝑡+1 by applying succession operators to 𝑂𝑡 and 𝑃𝑡. 17 

g. 𝑡 + + 18 

} 19 

while(stop condition). 20 

6. Return the best fitting element in the last population. 21 

2.3. Extended Compact Genetic Algorithm  22 

The Extended Compact Genetic Algorithm (ECGA) is another variant of the classic 23 

evolutionary algorithm. 24 

In this algorithm, because of selection (e.g., tournament) from the current population 𝑃𝑡 ,  25 

a set G is selected, the so-called set of "promising" solutions. Individual components of 26 

individuals belonging to the set G are grouped into independent subsets, the number of which 27 

is a heuristic parameter. A typical approach is to divide the range to which a given variable 28 

belongs into several disjoint sub-intervals. Then, it is determined how many individuals from 29 

set G have the observed variable in each of the subintervals. These values are used to determine 30 

the boundary probability of each group, and the next generation is generated according to the 31 

obtained distributions. Thanks to this, in the progeny generation, the appearance of individuals 32 

from the ranges in which the number of promising solutions is significant is greater. 33 

This construction of the heuristic has one disadvantage: in continuous case it does not find 34 

optimal value exactly. It rather brackets the point at which optimum occurs. This can be dealt 35 

with by slightly modifying the ECGA. Every dozen or so iterations, we narrow the search only 36 

to the sub-interval for which the limit probabilities are the highest. This procedure causes that 37 
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ECGA, which in the original version copes well with exploration, also begins to exploit space 1 

well. Gradually reducing the set of feasible solutions significantly increases the chances of 2 

finding an exact solution. This is like a variable-adjacency local search or one of the versions 3 

of the ant algorithm. 4 

The ECGA pseudocode in the version described above is as follows: 5 

procedure ECGA: 6 

1. Initialize metaparameters – size of population and set G, spacing density in each 7 

direction. 8 

2. Randomly build starting population 𝑃0. 9 

3. Evaluate population 𝑃0 according to fitness function. 10 

4. Set 𝑡 = 0. 11 

5. do { 12 

a. Select the members of the promising set 𝐺. 13 

b. Determination of the limiting probabilities for each of the variables of individuals 14 

belonging to the set of 𝐺. 15 

c. Generation of a new individuals according to the probabilistic model in order to 16 

produce 𝑂𝑡. 17 

d. Evaluate population 𝑂𝑡 according to fitness function. 18 

e. Produce 𝑃𝑡+1 by applying succession operators to 𝑂𝑡 and 𝑃𝑡. 19 

f. 𝑡 + +. 20 

g. If necessary, reduce the set of admissible solutions to a subset containing  21 

a significant number of individuals from the set of 𝐺 22 

} 23 

while (stop condition). 24 

6. Return the best fitting element in the last population. 25 

3. Results 26 

All algorithms were tested against four test functions: 27 

1. Spheric function 28 

𝑓(𝑥1, 𝑥2) = 𝑥1
2 + 𝑥2

2 29 

2. Rastrigin function 30 

𝑓(𝑥1, 𝑥2) = 20 + ∑(𝑥𝑖
2 − 10 𝑐𝑜𝑠(2π𝑥𝑖))

2

𝑖=1

 31 

3. Himmelblau function 32 

𝑓(𝑥1, 𝑥2) = (𝑥1
2 + 𝑥2 − 11)2 + (𝑥1 + 𝑥2

2 − 7)2  33 

  34 
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4. Rosenbrock function 1 

𝑓(𝑥1, 𝑥2) = (1 − 𝑥1)
2 + 100(𝑥2 − 𝑥1

2)2 2 

The first of the test functions was used to assess the correct operation of own programs.  3 

The spherical function optimizes well and each method should find its minimum correctly. 4 

Subsequent functions were selected to check how well the tested heuristics cope with various 5 

difficulties in optimization. The Rastigin function is a typical multimodal function. Its tests are 6 

to show how resistant the method is to being left in local extremes. The Rosenbrock function 7 

reaches its minimum at one point lying in a very flat valley and is difficult to optimize due to 8 

the small differences between the values of the objective function. The Himmelblau function is 9 

a function having four equivalent local minima. Testing heuristics on it is to check whether the 10 

optimization method is able to "capture" the existence of many equivalent global minima. 11 

The following assumptions were made in the tests performed for the purposes of this work: 12 

 the size of the population and the maximum number of iterations were the same for 13 

each method and amounted to 𝑁 = 30, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 = 500. 14 

 the halting criterion was no change (by more than 10−6) in 20 consecutive generations. 15 

 tournament selection and succession were used, preserving the best individual from the 16 

previous generation. 17 

 each test included 50 independent starts. 18 

Optimisation results with the use of each heuristic for selected test functions are shown in 19 

Table 1, Table 2 and Table 3. Vectors 𝑥 𝑜𝑝𝑡 , 𝑥 𝑏𝑒𝑠𝑡, 𝑥 𝑚𝑒𝑎𝑛 are respectively the point where the 20 

analytical minimum occurs, the best result found in 50 runs, the average result over 50 runs. 21 

The tables also contain additional information about the relative error understood as 22 

𝛿𝑓 =
|𝑓(𝑥 𝑜𝑝𝑡) − 𝑓(𝑥 𝑏𝑒𝑠𝑡)|

1 + |𝑓(𝑥 𝑜𝑝𝑡)|
⋅ 100%  23 

and standard derivaions 𝜎 in 50 runs. 24 

Table 1. 25 
Results of Evolutionary Algorithm 26 

Function Analytic minimum 
EA 

𝑥 𝑏𝑒𝑠𝑡 = (𝑥1, 𝑥2) 𝛿𝑓 𝑥 𝑚𝑒𝑎𝑛 = (�̃�1, �̃�2) 𝜎 

Spheric 
𝑥 𝑜𝑝𝑡 = (0,0) 

𝑥1 = 0.0008197 
𝑥2 = −0.001555 

 
�̃�1 = −0.00185 

�̃�2 = −0.00176 
 

𝑓(𝑥 𝑜𝑝𝑡) = 0 𝑓(𝑥𝑏𝑒𝑠𝑡) = 0.00175 ≈ 0.175% 𝑓 ≈ 0.00445 0.0615 

Rastrigin 
𝑥 𝑜𝑝𝑡 = (0,0) 

𝑥1 = 0.004234 

𝑥2 = −0.00268 
 

�̃�1 = 0.072767 

�̃�2 = −0.013564 
 

𝑓(𝑥 𝑜𝑝𝑡) = 0 𝑓(𝑥𝑏𝑒𝑠𝑡) = 0.00498 ≈ 0.498% 𝑓 ≈ 1.79551 1.6114 

Rosenbrock 
𝑥 𝑜𝑝𝑡 = (1,1) 

𝑥1 = 1.03732 

𝑥2 = 1.06629 
 

�̃�1 = 0.072767 

�̃�2 = −0.013564 
 

𝑓(𝑥 𝑜𝑝𝑡) = 0 𝑓(𝑥𝑏𝑒𝑠𝑡) = 0.01087 ≈ 1.087% 𝑓 ≈ 6.5147 17.302 

  27 
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Cont. table 1. 1 

Himmelblau 

𝑥 𝑜𝑝𝑡

= {

(3, 2)

(−2.805, 3.131)

(−3.779, −3.283)

(3.584, −1.848)

 

𝑥1 = −3.77734 
𝑥2 = −3.28137 

 
�̃�1 = 0.072767 

�̃�2 = −0.013564 
 

 𝑓(𝑥 𝑜𝑝𝑡) = 0 𝑓(𝑥 𝑏𝑒𝑠𝑡) = 0.00027 ≈ 0.027% 𝑓 ≈ 0.7248 1.3547 

Table 2. 2 
Results of Extended Compact Genetic Algorithm 3 

Function Analytic minimum 
ECGA 

𝑥 𝑏𝑒𝑠𝑡 = (𝑥1, 𝑥2) 𝛿𝑓 𝑥 𝑚𝑒𝑎𝑛 = (�̃�1, �̃�2) 𝜎 

Spheric 
𝑥 𝑜𝑝𝑡 = (0,0) 

𝑥1 = −2.68 ⋅ 10−10 
𝑥2 = 4.26 ⋅ 10−8 

 
�̃�1 = −0.00076 

�̃�2 = −0.00204 
 

𝑓(𝑥 𝑜𝑝𝑡) = 0 𝑓(𝑥𝑏𝑒𝑠𝑡) = 4.3 ⋅ 10−8 ≪ 0.001% 𝑓 ≈ 0.000983 0.00375 

Rastrigin 
𝑥 𝑜𝑝𝑡 = (0,0) 

𝑥1 =  6.06 ⋅ 10−6 

𝑥2 = −3.87 ⋅ 10−6 
 

�̃�1 = 0.080108 

�̃�2 = −0.09905 
 

𝑓(𝑥 𝑜𝑝𝑡) = 0 𝑓(𝑥𝑏𝑒𝑠𝑡) = 1.03 ⋅ 10−8 ≪ 0.001% 𝑓 ≈ 0.3138 0.86817 

Rosenbrock 
𝑥 𝑜𝑝𝑡 = (1,1) 

𝑥1 =  1.0002 

𝑥2 = 1.0004 
 

�̃�1 = 0.919493 

�̃�2 = 0.884791 
 

𝑓(𝑥 𝑜𝑝𝑡) = 0 𝑓(𝑥𝑏𝑒𝑠𝑡) = 3.31 ⋅ 10−7 ≪ 0.001% 𝑓 ≈ 0.4694 0.0876 

Himmelblau 

𝑥 𝑜𝑝𝑡 =

= {

(3, 2)

(−2.805, 3.131)

(−3.779, −3.283)

(3.584, −1.848)

 

𝑥1 = −3.77932 
𝑥2 = −3.283177 

 
�̃�1 = −1,10304 

�̃�2 = −1.63932 
 

 𝑓(𝑥 𝑜𝑝𝑡) = 0 𝑓(𝑥 𝑏𝑒𝑠𝑡) = 1.1 ⋅ 10−8 ≪ 0.001% 𝑓 ≈ 0.12695 0.2396 

Table 3. 4 
Results of Population-based Incremental Learning 5 

Function Analytic minimum 
PBIL 

𝑥 𝑏𝑒𝑠𝑡 = (𝑥1, 𝑥2) 𝛿𝑓 𝑥 𝑚𝑒𝑎𝑛 = (�̃�1, �̃�2) 𝜎 

Spheric 
𝑥 𝑜𝑝𝑡 = (0,0) 

𝑥1 =  1.14 ⋅ 10−6 

𝑥2 = −2.26 ⋅ 10−6 
 

�̃�1 = −0.000996 

�̃�2 = 0.0007844 
 

𝑓(𝑥 𝑜𝑝𝑡) = 0 𝑓(𝑥𝑏𝑒𝑠𝑡) = 2.5 ⋅ 10−6 ≪ 0.001% 𝑓 ≈ 0.003585 0.00517 

Rastrigin 
𝑥 𝑜𝑝𝑡 = (0,0) 

𝑥1 = −0.00308 

𝑥2 = −0.00244 
 

�̃�1 = 1.13311 

�̃�2 = 1.11427 
 

𝑓(𝑥 𝑜𝑝𝑡) = 0 𝑓(𝑥𝑏𝑒𝑠𝑡) = 0.00306 ≈ 0.306% 𝑓 ≈ 3.451923 2.1875 

Rosenbrock 
𝑥 𝑜𝑝𝑡 = (1,1) 𝑥1 =  1.00031 

𝑥2 = 1.00063 
 

�̃�1 = 1.2217 

�̃�2 = 1.54992 
 

𝑓(𝑥 𝑜𝑝𝑡) = 0 𝑓(𝑥𝑏𝑒𝑠𝑡) = 1.1 ⋅ 10−7 ≪ 0.001% 𝑓 ≈ 0.10692 0.1768 

Himmelblau 

𝑥 𝑜𝑝𝑡 =

= {

(3, 2)

(−2.805, 3.131)

(−3.779, −3.283)

(3.584, −1.848)

 

𝑥1 =  3.00007 
𝑥2 =  1.99983 

 
�̃�1 = 2.2454 

�̃�2 = 1.7731 
 

 𝑓(𝑥 𝑜𝑝𝑡) = 0 𝑓(𝑥 𝑏𝑒𝑠𝑡) = 4.5 ⋅ 10−7 ≪ 0.001% 𝑓 ≈ 0.0027 0.00491 

 6 

The runs of the best optimizations are presented at Figure 1-Figure 4.  7 
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 1 

Figure 1. Optimisation runs using the heuristics tested - Spherical function. 2 

 3 

Figure 2. Optimisation runs using the heuristics tested - Ratrigin function. 4 

 5 

Figure 3. Optimisation runs using the heuristics tested - Rosenbrock function. 6 

 7 

Figure 4. Optimisation runs using the heuristics tested - Himmelblau function. 8 
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The graphs show that in the EA, the stop condition intervened the fastest, but at the cost of 1 

a loss of accuracy. Both modifications achieve much better results than the original EA.  2 

This applies to both the accuracy and the level of standard deviation in 50 runs. Fig. 5 shows 3 

that this deviation is the largest for EA, which proves that the best result presented in Tab. 1 is 4 

not a typical result. EA is particularly bad at optimizing the Rosenbrock Valley. Although the 5 

best result in the test is satisfactory, it should be remembered that it was obtained in 50 runs.  6 

A very large standard deviation proves that in many optimizations the result was very 7 

inaccurate. We do not observe such an effect in any test of algorithms with probabilistic models. 8 

When it comes to comparing ECGA and PBIL, the results indicate that the second method 9 

is worse at dealing with multimodal functions, although still better than the standard EA.  10 

PBIL also needs more iterations to get accurate results. 11 

 12 

Figure 5. Standard deviation of the objective function values in 50 runs - logarithmic scale. 13 

4. Discussion 14 

The analysis of the obtained results shows that the replacement of genetic operators in the 15 

evolutionary algorithm by a probabilistic model built on the basis of promising solutions 16 

significantly increases the optimization accuracy. Both PBIL and ECGA determine function 17 

minima with much greater accuracy. The slower operation of PBIL and its lower efficiency in 18 

the case of multimodal functions result from a very simple procedure of building a probabilistic 19 

model. The expectation vector is modified based on one solution, which must affect the rate of 20 

optimization. Even such a simple model works better than the standard EA exchange of 21 

information based on crossing and mutation. 22 

Of particular importance are the results of optimization of the Himmelblau function.  23 

It is a function with four equivalent minima. The population nature of the heuristics in a single 24 

run did not capture the existence of several extremes, because in subsequent generations,  25 

the population clustered around a single extreme. The existence of several points where the 26 
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function reaches the same, minimum value was noticed by analyzing the results of several 1 

dozen launches. The random nature of all the analyzed heuristics meant that in different runs, 2 

extremes of similar value were found, but located at different points. Since the frequency of the 3 

points found was approximately the same, the obtained results had to be interpreted as 4 

indicating the existence of several equivalent minima. 5 

5. Summary 6 

An attempt to modify the classic Evolutionary Algotithm by replacing genetic operators 7 

with a probabilistic model of promising solutions seems to be a good solution. Such heuristics 8 

produce more accurate results and require fewer function evaluations to solve at the level found 9 

by EA. The use of a probabilistic model results in fewer low-value individuals in the progeny 10 

population. This may give a better chance of finding a solution using smaller populations. 11 

The modifications used in the heuristics discussed in the article are not complicated either 12 

from the mathematical or programming side and still remain methods with a simple idea.  13 

There are also no requirements for the objective function. As in EA, the value of the evaluation 14 

function is sufficient for the correct operation of EA with a probabilistic model. 15 
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