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Purpose: This paper attempts to present a method for studying hourly time series of forecasting 5 

errors in electricity consumption in the context of daily and weekly seasonality.  6 

Design/methodology/approach: The proposed approach is based on MSTL (Bandara, 7 

Hyndman, Bergmeir, 2021) decomposition of hourly forecast error series. The method is 8 

presented using the example of household electricity consumption based on data (Makonin, 9 

2019). The time series was divided into a training set and a test set. The forecast was made 10 

based on the training set for the test period. Next, the time series of differences between the 11 

actual (test set) and forecast values was examined. Calculations were performed in the  12 

R environment. 13 

Findings: Decomposition of the forecasting error time series makes it possible to isolate the 14 

seasonal (systematic) components of forecasting errors. The values of daily and weekly errors 15 

show how forecast values deviate from actual values in a systematic way. These values can be 16 

used to adjust forecasts in subsequent periods. 17 

Research limitations/implications: Identification and inclusion of seasonal components in 18 

forecasting errors may not improve forecast quality. The assumption made about daily and 19 

weekly seasonality of the error may not be met. 20 

Originality/value: This paper presents a decompositional approach to examining the time 21 

series of forecasting errors in order to identify deterministic error components for possible 22 

adjustment of future forecasts. 23 

Keywords: forecasting error decomposition, error time series, forecasting error analysis, multi-24 

seasonal decomposition. 25 

Category of the paper: Research paper, Conceptual paper. 26 

1. Introduction  27 

Forecasting electricity consumption is of significant economic importance. It is primarily 28 

related to electricity demand planning.  29 
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Various approaches and models are used to forecast electricity consumption (Islam et al., 1 

2022; Ghalehkhondabi et al., 2017). In addition to classical methods (Hyndman, 2 

Athanasopoulos, 2018), artificial intelligence models are also used (Ahn, Kim, 2022). 3 

Electricity consumption series are characterized by seasonality (daily, weekly and yearly) 4 

which forecasting models should take into account (Shao et al., 2017). 5 

In business practice, profiles (mainly annual) of electricity consumption are often used 6 

(Duarte et al., 2022; Anvari et al., 2022; Bargiel et al., 2019). The main reasons for using 7 

consumption profiles are: there are historical data gaps (Kowalska-Styczeń et al., 2022); 8 

consumption readings are taken at a different frequency than required.  9 

As a result, forecasts have large errors, which can be subjected to various analyses.  10 

In general, averaged forecasting errors are determined, such as Mean Absolute Error, Mean 11 

Squared Error. A more detailed study of forecasting errors can involve Fourier analysis (Yang 12 

et al., 2022). In such a situation, the time series of forecasting errors can be analyzed like any 13 

time series. 14 

In this paper, it is assumed ad hoc that the forecasting error series is characterized by the 15 

same seasonality as the electricity consumption series. For the identification of individual 16 

components, the considerations presented here refer to a forecasting perspective in which the 17 

error time series is sufficiently long.  18 

The main objective of this paper is to present the author’s method for investigating 19 

forecasting errors in the context of daily and weekly seasonality based on the MSTL 20 

decomposition (Bandara et al., 2021), for hourly data. The identification of the daily and weekly 21 

components of the error series shows what proportion of the overall error is accounted for by 22 

daily and weekly systematic variation. The identification of systematic components can be used 23 

to adjust the forecasting model in subsequent forecasting periods. 24 

2. Materials and methods  25 

Secondary data was analyzed (Makonin, 2018). The time series “Residential_1.tab”, which 26 

shows electricity consumption [kWh] in bungalows (belongs to single-level houses built in the 27 

1940s and 1950s). Hourly data from 2012-06-01 to 2015-05-31 were used for the analysis. 28 

The time series was divided into two subsets (two time windows). Each subset covered one 29 

year.  30 

The first subset covered the period from 2012-06-01 to 2013-05-31 and constituted the 31 

learning part (training set). Based on this set, a forecast was made for the following year.  32 

The second subset of data covered the period from 2013-06-01 to 2014-05-31 and 33 

constituted the test part (test set) for forecasts built on the basis of the first subset. Based on the 34 

second subset and the forecasts covering this period, a series of forecasting errors was 35 

determined and analyzed. 36 
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The data and the division of the data into subsets are shown in Figure 1. 1 

 2 

Figure 1. Hourly electricity consumption by training and test sets. 3 

The research was carried out in stages related to the division of data into subsets. In the first 4 

stage, a forecast for the following year was built. A seasonal naive model was used, taking into 5 

account annual seasonality. 6 

In the second stage, forecasting errors were determined for the test set and an MSTL 7 

(Bandara et al., 2021) decomposition of the error series was performed. The average daily and 8 

weekly profile of forecasting errors was determined. The strength of seasonality and trend in 9 

the errors was examined using measures (Wang et al., 2006): 10 

𝐹𝑇 = max (0, 1 −  
𝑉𝑎𝑟(𝑅𝑡)

𝑉𝑎𝑟(𝑇𝑡 + 𝑅𝑡)
), (1) 

𝐹𝑆 = max (0, 1 −  
𝑉𝑎𝑟(𝑅𝑡)

𝑉𝑎𝑟(𝑆𝑡 + 𝑅𝑡)
), (2) 

where:  11 

Tt is the smoothed trend component,  12 

St is the seasonal component, 13 

Rt is a remainder component.  14 

 15 

Equation (1) determines the strength of the trend component and equation (2) the seasonal 16 

component. The MSTL decomposition is additive, so the strength of the seasonal component 17 

(2) was counted separately for the analyzed seasonality and together. Measures of component 18 
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strength (1) and (2) take values from 0 to 1. The closer the value to 1, the stronger the 1 

component. 2 

All calculations were performed in the R environment (R Core Team, 2022), using the 3 

“forecast” package (Hyndman et al., 2022). 4 

3. Results 5 

The data subsets studied have a similar distribution of values (Figure 2). 6 

 7 

Figure 2. Distribution of values of the considered data sets. 8 

The basic numerical descriptive characteristics are shown in Table 1. 9 

Table 1. 10 
Basic descriptive characteristics of the data sets under consideration 11 

Measure Training set Test set 

Minimum 0.000 0.000 

1st quartile 0.596 0.614 

Median 0.918 0.873 

Mean 1.141 1.098 

3rd quartile 1.454 1.343 

Maximum 5.880 12.372 

Standard deviation 0.699 0.697 

 12 

The main difference in the distributions relates to the maximum values. There are two 13 

definite outlier observations in the test set. Since the problem relates to electricity consumption 14 

for two hours during the year, this has no significant impact. Moreover, there is no indication 15 

that the recorded consumption is a consequence of the error. Thus, these observations were left 16 

in the set. 17 
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Based on the training set, a forecast was made for the following year, that is, for the time 1 

period of the test set. The forecasting results are shown in Figure 3. 2 

 3 

Figure 3. Actual (gray) and forecast (black) values of electricity consumption. 4 

For the test set, forecasting errors were calculated as the difference between actual and 5 

forecast values. Figure 4 shows the time plot of forecasting errors, the autocorrelation function 6 

(ACF) and the partial autocorrelation function (PACF). 7 

 8 

Figure 4. Forecasting error series and ACF and PACF charts. 9 



178 M. Wolny 

In the ACF and PACF charts, one can see significant peaks for 24-hour delays  1 

(and multiples). One can also see a clearly greater autocorrelation for 168-hour delays.  2 

This confirms the presence of daily and weekly seasonality in the series.  3 

Decomposition of the error series was performed using the MSTL method (Bandara et al., 4 

2021). The individual components of the decomposed forecasting error series are shown in 5 

Figure 5. 6 

 7 

Figure 5. Error time series decomposition. 8 

In Figure 5, the “Data” time series shows the development of forecasting errors.  9 

The following time series: “Trend,” “Seasonal24” and “Seasonal168” present the deterministic 10 

components of the forecasting error series. The “Remainder” component, on the other hand, 11 

should present the error series related to randomness, although technically it is the difference 12 

between the “Data” error series and its deterministic component.  13 

By comparing the average forecasting errors counted for the “Data” series and those 14 

counted for the “Remainder” series, it is possible to assess how the elimination of the 15 

deterministic components of forecasting errors affects the quality of the forecast. The following 16 

errors were determined for the considered series and are shown in Table 2: Mean Absolute 17 

Error (MAE), Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), Median 18 

Absolute Error (MdAE), Median Squared Error (MdSE), Median Absolute Percented Error 19 

(MdAPE). 20 

  21 
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Table 2. 1 
Total forecasting errors and errors after elimination of deterministic components 2 

Error 
Time series 

“Data” “Remainder” 

MAE  0.535 0.427 

MSE 0.704 0.414 

MAPE 50.4% 41.1% 

MdAE 0.310 0.271 

MdSE 0.096 0.074 

MdAPE 30.4% 28.4% 

 3 

Given the large size of the analyzed set (8,760 observations), it can be assumed that for all 4 

calculated measures, significantly lower values were obtained for the “Remainder” series.  5 

The strength of the trend component determined according to formula (1) is 0.085.  6 

This means that the trend component in the forecasting error is very weak. For the seasonality 7 

components, considered together, the value of measure (2) is 0.377. For the component of daily 8 

seasonality (Seasonal24) is 0.274. While for weekly seasonality (Seasonal168) it is 0.182.  9 

This means that the seasonality in the analyzed series is weak. At the same time, daily 10 

seasonality is relatively stronger than weekly seasonality.  11 

The components of the series are determined using the STL method (Cleveland et al., 1990). 12 

Consequently, the seasonal components are not regular. By averaging (using medians) the daily 13 

deviations (Seasonal24) and the weekly deviations (Seasonal168), the daily error profile and 14 

the weekly error profile can be obtained, as shown in Figure 6. 15 

 16 

Figure 6. Median-averaged daily and weekly forecasting error profile. 17 
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The averaged profiles shown in Figure 6 present the average forecasting error for the 1 

corresponding hour during the day (for the daily profile) and during the week (for the weekly 2 

profile). Of interest from the analyst’s point of view is whether there is regularity in the errors 3 

made. Analysis of the graphs and the course of errors over time indicates that there is no obvious 4 

regularity. The daily profile’s randomness test (Wald, Wolfowitz, 1940) indicates that it can be 5 

considered random (statistic = -0.835, runs = 11, n1 = 12, n2 = 12, n = 24, p-value = 0.404).  6 

On the other hand, the results of the randomness test for the weekly profile (statistic = -3.250, 7 

runs = 64, n1 = 84, n2 = 84, n = 168, p-value = 0.001) indicate a lack of randomness.  8 

At the same time, it is difficult to pinpoint a clear reason for the lack of randomness in this 9 

series. However, in technical terms, it is a consequence of too many runs. 10 

4. Discussion and conclusions 11 

The paper proposes to study a range of forecasting errors using MSTL decomposition.  12 

The decomposition makes it possible to extract the deterministic components of the error,  13 

which can be used to correct the forecasting model.  14 

Deterministic components show systematic forecasting error, which, when eliminated,  15 

can improve the quality of forecasts. This is shown by the values in Table 2. At the same time, 16 

it should be noted that forcing seasonality does not necessarily make it obvious. Thus,  17 

it is reasonable to study the strength of the relevant components of the time series in advance 18 

(Wang et al., 2006). 19 

Accounting for multi-seasonality in the decomposition of a time series can also be done 20 

using harmonic analysis (De Livera et al., 2011). Preliminary consideration of the 21 

corresponding harmonics (Fourier analysis) can be an alternative to the proposed approach. 22 

Harmonics corresponding to daily and weekly seasonality will be regular. On the one hand, 23 

they will not take into account the change in seasonality over time. On the other, the 24 

determination of daily and weekly profiles will be relatively simple, unencumbered by 25 

variability. 26 

Notably, the analyzed time series of forecasting errors was characterized by relatively weak 27 

seasonality. This fact may undermine the assumption of the presence of multi-seasonality in the 28 

errors or indicate a good forecasting model. Furthermore, one can consider whether 29 

decomposition with a single dominant seasonality could be sufficient. Then, the classical 30 

decomposition or STL decomposition could be used. 31 

In summary, the proposed method can be particularly useful when: 32 

 forecasts are subject to large errors,  33 

 the predictive model is based on incomplete or aggregated data. 34 

  35 
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In general, decomposition study of a range of forecasting errors: 1 

 involves breaking down the total forecast error into seasonal components and 2 

determining the contribution of individual systematic factors to the error, 3 

 aims to identify the causes of forecasting errors and enable a better understanding of 4 

why the forecast was inaccurate, 5 

 can be used to assess the quality of different forecasting methods and compare their 6 

effectiveness. 7 
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