
S I L E S I A N  U N I V E R S I T Y  O F  T E C H N O L O G Y  P U B L I S H I N G  H O U S E  

 

SCIENTIFIC PAPERS OF SILESIAN UNIVERSITY OF TECHNOLOGY 2022 

ORGANIZATION AND MANAGEMENT SERIES NO. 167 

http://dx.doi.org/10.29119/1641-3466.2022.167.16  http://managementpapers.polsl.pl/ 

A QUEUEING MODEL OF PATIENT SERVICE IN ACCORDANCE 1 

WITH THE S.T.A.R.T STANDARD 2 

Wojciech M. KEMPA1*, Arkadiusz BANASIK2 3 

1 Silesian University of Technology, Faculty of Applied Mathematics, Department of Mathematics Applications 4 
and Methods for Artificial Intelligence; wojciech.kempa@polsl.pl, ORCID: 0000-0001-9476-2070 5 

2 Silesian University of Technology, Faculty of Applied Mathematics, Department of Mathematics Applications 6 
and Methods for Artificial Intelligence; arkadiusz.banasik@polsl.pl, ORCID: 0000-0002-4267-2783 7 

* Correspondence author 8 

Purpose: Currently, in Poland, the process of patient registration at the hospital emergency 9 

department (SOR) is carried out in accordance with the S.T.A.R.T. (Simple Triage And Rapid 10 

Treatment) standard. According to this procedure, based on a preliminary interview, patients 11 

are selected and assigned to one of five risk categories, described by colors: red, orange, yellow, 12 

green, or blue. Since this standard is relatively new (introduced in 2019), its analysis using 13 

quantitative, not only qualitative, methods are highly desired. 14 

Design/methodology/approach: The so-called mean-value approach for studying the proposed 15 

queueing model is used in the paper.  16 

Findings: For each category of patients, the mean number of patients present in the system,  17 

the mean queue length, and the average values of waiting time for admission by a doctor and 18 

time spent in the emergency department are found. Two priorities are considered: non-19 

preemptive (absolute) and preemptive-resume (relative). Numerical calculations illustrate 20 

theoretical results. 21 

Originality/value: Explicit representations for key queueing characteristics are found 22 

analytically. Moreover, illustrating numerical results simulating the "behavior" of a real 23 

hospital emergency department are presented and discussed.  24 

Keywords: hospital emergency department, priority service, quality of service (QoS); queueing 25 

model, S.T.A.R.T. standard. 26 

Category of the paper: research paper. 27 

1. Introduction 28 

Hospital emergency departments (SOR acronym commonly used in Poland), by definition, 29 

should meet the highest quality standards for patient care. They should also be perfectly 30 

managed to specialist medical equipment, patient service time, and human resources (medical 31 

personnel). Currently, in Poland, the process of patient registration at the hospital emergency 32 
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department is carried out in accordance with the S.T.A.R.T. (simple triage and rapid treatment) 1 

standard. The algorithm was initiated by the Newport Beach Fire and Marine Department and 2 

Hoag Hospital in Newport Beach (California, U.S.A.) in 1983. According to the S.T.A.R.T. 3 

procedure, based on a preliminary interview, patients are selected and assigned to one of five 4 

risk categories, described by colors: red, orange, yellow, green, or blue. Different modifications 5 

of the original approach were proposed later. For example, in 1996, the S.T.A.R.T.-S.A.V.E. 6 

(Secondary Assessment of Victim Endpoint) standard was worked out by Benson, Koenig, and 7 

Schultz (Benson et al., 1996), in which some additional factors determining "survivability" of 8 

a patient over time were implemented. In the literature, one can find many studies and 9 

comparisons regarding the original algorithm and its modifications to various aspects of patient 10 

service in hospital emergency departments, the quality of this service, and the possibility of its 11 

improvement (see, e.g., Baker, 2007; Kahn et al., 2009; Badiali et al., 2017; Fink et al., 2018; 12 

Ferrandini et al., 2018). 13 

Queueing systems are commonly used in modeling different-type real-life phenomena.  14 

In particular, they are proposed for solving management and quality-of-service problems 15 

occurring in production engineering, computer and telecommunication networks, transport and 16 

logistics, medical sciences, and health care procedures (see, e.g., Bose, 2002; Ng, Soong, 2008; 17 

Chan, 2014; Shortle et al., 2018; Lakatos et al., 2019). By constructing an appropriate queueing 18 

model and determining its stochastic characteristics, it is possible to answer many questions 19 

regarding the quality of service and the level of use of the service station capabilities. 20 

In the article, a queueing system with many classes of customers and priority service is 21 

proposed for modeling the process of qualifying and serving patients. The stream of incoming 22 

patients is described using the Poisson process, while the time of processing of a single patient 23 

is assumed to be hyper-exponentially distributed. For each category of patients, the mean 24 

number of patients present in the system, the mean queue length, and the average values of 25 

waiting time for admission by a doctor and time spent in the emergency department are found. 26 

Two priorities are considered: non-preemptive (absolute) and preemptive-resume (relative). 27 

Numerical calculations illustrate theoretical results. 28 

2. Description of a queueing model 29 

Arrival and service processes 30 

Let us assume that patients arrive at the emergency department according to the Poisson 31 

process with a certain constant intensity λ. The Palm-Khintchine theorem justifies this 32 

assumption (see, e.g., Heyman, Sobel, 1982), according to which the superposition of many 33 

"rare" and independent streams of events (namely, here, streams of patients coming from 34 

different "directions") can be well approximated by the Poisson event stream. After arriving 35 
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patients are registered, a general interview is carried out, and on its basis, an initial assessment 1 

of their health condition and related risks is performed. The consequence of this procedure is 2 

the selection of patients and their division into five different classes marked with bands of 3 

different colors: red (R), orange (O), yellow (Y), green (G), or blue (B). The appropriate priority 4 

of patient service is associated with a specific class (color) determined by the patient's health 5 

condition. We will assume that patients marked in red have priority in handling  6 

(e.g., when performing laboratory or radiological tests) over all other patients, patients in orange 7 

"give way" to only "red" patients, etc. The principles of giving priority to handling specific 8 

patients are graphically presented in the following diagram: 9 

 10 

Figure 1. Priority rule in the considered queueing model. 11 

Assume that 𝑞𝑗 is the fraction of arriving patients qualified as 𝑗-type patients, where  12 

𝑗 = 𝑅, 𝑂, 𝑌, 𝐺, 𝐵. Relating to splitting property of a Poisson process (Tijms, 2003), 𝑗-type 13 

patients arrive at the emergency department according to a Poisson process with intensity  14 

𝜆𝑗 ≝ 𝑞𝑗𝜆 (𝑗 = 𝑅, 𝑂, 𝑌, 𝐺, 𝐵). Within a given class, patients are served in accordance with the 15 

FIFO (First In First Out) discipline, i.e., in the order in which they appeared in the emergency 16 

department. The queue of waiting patients is unlimited in advance. The service time for a single 17 

patient is closely related to her/his health condition. It is not necessarily the longest in the case 18 

of the highest priority patients (such patients are often referred directly to a specific hospital 19 

ward, e.g., for urgent surgery). In general, therefore, we will assume that the service time for  20 

a single 𝑗-type patient has a hyper-exponential distribution with the following probability 21 

density function (PDF): 22 

𝑓𝑗(𝑡) ≝ ∑ 𝑝𝑖
(𝑗)

𝑒𝑥𝑝 (−𝜇𝑖
(𝑗)

𝑡) , 𝑡 > 0
𝑘𝑗

𝑖=1
 (1) 23 

where 𝑗 = 𝑅, 𝑂, 𝑌, 𝐺, 𝐵. Values 𝑘𝑅 , 𝑘𝑂 , 𝑘𝑌, 𝑘𝐺 , and 𝑘𝐵 denote numbers of possible complete 24 

diagnostic paths for a 𝑗-type patient. In practice, these numbers can be the same for all patients. 25 

However, it is not a rule. The value 
1

𝜇
𝑖
(𝑗) is the mean duration of the 𝑖th complete diagnostic path 26 

offered for the 𝑗-type patient (𝑖 = 1, … , 𝑘𝑗). 27 

Let us note that the occupation rate 𝜌𝑗 of the system relating to 𝑗-type patient (where  28 

𝑗 = 𝑅, 𝑂, 𝑌, 𝐺, 𝐵) equals 29 

𝜌𝑗 = 𝜆𝑗 ∙ 𝐸(𝐵𝑗) = 𝜆𝑗 ∙ ∑
𝑝𝑖

(𝑗)

𝜇
𝑖
(𝑗)

𝑘𝑗

𝑖=1
 (2) 30 

where 𝐵𝑗 stands for the service time of a 𝑗-type patient. To ensure the existence of the stationary 31 

state of the system, let us assume that 32 

RED > ORANGE > YELLOW > GREEN > BLUE 
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𝜌 ≝ 𝜌𝑅 + 𝜌𝑂 + 𝜌𝑌 + 𝜌𝐺 + 𝜌𝐵 < 1 (3) 1 

Priority rules 2 

In the studied queueing model of patient service at the hospital emergency department,  3 

we will consider the following two models of the priority rule (discipline): 4 

 absolute priority (preemptive-resume priority) in which an arriving higher-priority 5 

patient interrupts the ongoing service of a lower priority patient, 6 

 relative priority (non-preemptive priority) in which the ongoing service process of  7 

a lower priority patient cannot be interrupted by a higher priority patient arriving at the 8 

hospital emergency department. 9 

For each priority rule, we will analyze the four main stochastic characteristics (performance 10 

measures) affecting the quality of service (QoS) for 𝑗 = 𝑅, 𝑂, 𝑌, 𝐺, 𝐵, namely: 11 

 the mean number of 𝑗-type patients present in the system (we will denote it by 𝐸(𝐿𝑗)), 12 

 the mean number of 𝑗-type patients waiting in a queue (denoted by 𝐸(𝑄𝑗)), 13 

 the mean sojourn time of a 𝑗-type patient (denoted by 𝐸(𝑆𝑗)), 14 

 the mean waiting time (for beginning the service) for a 𝑗-type patient (denoted by 15 

𝐸(𝑊𝑗)). 16 

Moreover, in dependence on the type of a priority rule, we will use the superscript 𝑎𝑏𝑠 or 17 

𝑟𝑒𝑙 in relation to the absolute or relative priority, respectively. So, for example, 𝐸(𝑆𝑅
𝑟𝑒𝑙) stands 18 

for the mean sojourn time of a red-type patient in the case of the relative priority rule. 19 

3. Analytic formulae for performance measures 20 

Since the service time of a single patient has not got the memoryless property  21 

(is not exponential), we will introduce the so-called residual service time, which is the time 22 

needed to complete the ongoing (at the arrival moment of a patient) service. In general  23 

(see, e.g., Adan, Resing, 2015), it is possible to express the mean residual service time by using 24 

the first two moments of the service time. Indeed, we have 25 

𝐸(𝑅𝑗) =
𝐸(𝐵𝑗

2)

2𝐸(𝐵𝑗)
 (4) 26 

where 𝐸(𝑅𝑗) and 𝐸(𝐵𝑗
2) are the mean residual service time of the 𝑗-type patient and the second 27 

moment of its service time (𝑗 = 𝑅, 𝑂, 𝑌, 𝐺, 𝐵), respectively. Adjusting the formula (4) to the 28 

hyper-exponential service times (see (1)), we have 29 
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𝐸(𝑅𝑗) =

∑
𝑝

𝑖
(𝑗)

[𝜇
𝑖
(𝑗)

]
2

𝑘𝑗
𝑖=1

2 ∑
𝑝

𝑖
(𝑗)

𝜇
𝑖
(𝑗)

𝑘𝑗
𝑖=1

 (5) 1 

The representations for mean values of the number of patients (of each type) present in the 2 

considered system, number of patients waiting in the queue, waiting, and sojourn times are 3 

essentially dependent on mean residual service times, occupation rates, and average service 4 

times and arrival rates. In the case of relative priority, the following formulae are accurate  5 

(see Adan, Resing, 2015) – we adjust the formulae to the notation introduced in the paper: 6 

𝐸(𝑆𝑗
𝑟𝑒𝑙) =

∑ 𝜌𝑖𝐸(𝑅𝑖)𝑖∈{𝑅,𝑂,𝑌,𝐺,𝐵}

(1−∑ 𝜌𝑖𝑖 ≥ 𝑗 )(1−∑ 𝜌𝑖𝑖>𝑗 )
+ 𝐸(𝐵𝑗) (6) 7 

and 8 

𝐸(𝑊𝑗
𝑟𝑒𝑙) =

∑ 𝜌𝑖𝐸(𝑅𝑖)𝑖∈{𝑅,𝑂,𝑌,𝐺,𝐵}

(1−∑ 𝜌𝑖𝑖 ≥ 𝑗 )(1−∑ 𝜌𝑖𝑖>𝑗 )
 (7) 9 

where 𝑗 = 𝑅, 𝑂, 𝑌, 𝐺, 𝐵. 10 

Now we will apply the well-known (see, e.g., Bose, 2002) Little’s formulae 𝐸(𝐿) = 𝜆𝐸(𝑆) 11 

and 𝐸(𝑄) = 𝜆𝐸(𝑊), where 𝐿, 𝜆, 𝑆, 𝑄, and 𝑊 stand for the number of customers (here: patients) 12 

present in the system, the arrival rate, the sojourn time, the waiting time and the number of 13 

customers (patients) waiting in the queue, respectively. We get from (6) and (7) the following 14 

representations: 15 

𝐸(𝐿𝑗
𝑟𝑒𝑙) =

𝜆𝑗 ∑ 𝜌𝑖𝐸(𝑅𝑖)𝑖∈{𝑅,𝑂,𝑌,𝐺,𝐵}

(1−∑ 𝜌𝑖𝑖 ≥ 𝑗 )(1−∑ 𝜌𝑖𝑖>𝑗 )
+ 𝜌𝑗 (8) 16 

and 17 

𝐸(𝑄𝑗
𝑟𝑒𝑙) =

𝜆𝑗 ∑ 𝜌𝑖𝐸(𝑅𝑖)𝑖∈{𝑅,𝑂,𝑌,𝐺,𝐵}

(1−∑ 𝜌𝑖𝑖 ≥ 𝑗 )(1−∑ 𝜌𝑖𝑖>𝑗 )
 (9) 18 

In the formulae above, the notation ∑ 𝜌𝑖𝑖 ≥ 𝑗  stands for the sum over all groups of patients 19 

with the priority that is higher than or equal to 𝑗. Similarly, in the case of ∑ 𝜌𝑖𝑖> 𝑗 , we take higher 20 

priorities than 𝑗. 21 

In the case of the absolute priority we have (Adan, Resing, 2015) 22 

𝐸(𝑆𝑗
𝑎𝑏𝑠) =

∑ 𝜌𝑖𝑖 ≥ 𝑗 𝐸(𝑅𝑖)

(1−∑ 𝜌𝑖𝑖 ≥ 𝑗 )(1−∑ 𝜌𝑖𝑖>𝑗 )
+

𝐸(𝐵𝑗)

1−∑ 𝜌𝑖𝑖>𝑗
 (10) 23 

and 24 

𝐸(𝑊𝑗
𝑎𝑏𝑠) =

∑ 𝜌𝑖𝑖 ≥ 𝑗 𝐸(𝑅𝑖)

(1−∑ 𝜌𝑖𝑖 ≥ 𝑗 )(1−∑ 𝜌𝑖𝑖>𝑗 )
 (11) 25 

where 𝑗 = 𝑅, 𝑂, 𝑌, 𝐺, 𝐵. 26 

  27 
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Hence, utilizing Little’s laws, we obtain 1 

𝐸(𝐿𝑗
𝑎𝑏𝑠) =

𝜆𝑗 ∑ 𝜌𝑖𝑖 ≥ 𝑗 𝐸(𝑅𝑖)

(1−∑ 𝜌𝑖𝑖 ≥ 𝑗 )(1−∑ 𝜌𝑖𝑖>𝑗 )
+

𝜌𝑗

1−∑ 𝜌𝑖𝑖>𝑗
 (12) 2 

and 3 

𝐸(𝑄𝑗
𝑎𝑏𝑠) =

𝜆𝑗 ∑ 𝜌𝑖𝑖 ≥ 𝑗 𝐸(𝑅𝑖)

(1−∑ 𝜌𝑖𝑖 ≥ 𝑗 )(1−∑ 𝜌𝑖𝑖>𝑗 )
 (13) 4 

4. Numerical examples 5 

In this section, we present illustrative numerical examples for some chosen sets of system 6 

parameters. The different sets of system input parameters correspond to the real-life scenarios 7 

of traffic intensity and patient service in the hospital emergency department. These parameters 8 

can be successfully estimated statistically based on concrete “learning” observations in a time 9 

window of a fixed width. In all computations (visualized in figures), we investigate the behavior 10 

of a given characteristic (e.g., the waiting time) in dependence on the intensity of patient 11 

arrivals. Let us note that these examples are illustrative and describe all possible practical 12 

situations only to a limited extent. 13 

 14 

Scenario no. 1  15 

In the first scenario, we assume that the number of possible diagnostic pathways for the 16 

most severely ill patients (red-type) is the highest, equal to 5. Then it decreases by one for the 17 

following categories (types) of patients. For patients in the lightest condition (blue-type), there 18 

is only one diagnostic path (the service time for such a patient is then described using one 19 

exponential random variable with a fixed parameter value). Moreover, we assume that random 20 

variables describing the pathways are different for different-type patients. So, we take a set of 21 

values presented in Table 1 as the input set of system parameters.  22 

Table 1. 23 
Model parameters for Scenario no. 1 24 

Patient type (𝒋) Parameter 

Number of 

diagnostic paths 

(𝒌𝒋) 

Frequency 

(𝒒𝒋) 

Parameters of different-

path service times  

(𝝁𝒊
(𝒋)

, 𝒊 = 𝟏, … , 𝒌𝒋) 

Frequencies of 

choosing a particular 

path 

(𝒑𝒊
(𝒋)

, 𝒊 = 𝟏, … , 𝒌𝒋) 

Red 5 0.10 (0.10, 0.20, 0.30, 0.40, 0.50)  (0.4, 0.3, 0.1, 0.1, 0.1) 

Orange 4 0.15 (0.25, 0.35, 0.40, 0.50)  (0.4, 0.3, 0.2, 0.1) 

Yellow 3 0.20 (0.30, 0.40, 0.50) (0.5, 0.4, 0.1) 

Green 2 0.15 (0.40, 0.55) (0.6, 0.4) 

Blue 1 0.40 (0.50) (1.0) 
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In Figure 1, the behavior of the mean sojourn time in dependence on the arrival rate of 1 

incoming patients is presented in the case of relative priority. Similar results for the absolute 2 

priority can be observed in Figure 2. Particular colors of lines in figures correspond to the 3 

patient type (red, orange, yellow, green, and blue). The values of the arrival intensity 𝜆 are taken 4 

in such a way as to satisfy the stationary condition of the system (𝜌 < 1). In Figures 3-4, 5 

similarly, the behavior of the mean number of patients (of each type) present in the system is 6 

shown in the case of relative and absolute priority, respectively. 7 

  

Figure 1. Mean sojourn time for Scenario no. 1 

and relative priority 

Figure 2. Mean number of patients for Scenario 

no. 1 and relative priority 

  

  

Figure 3. Mean sojourn time for Scenario no. 1 

and absolute priority 

Figure 4. Mean number of patients for Scenario 

no. 1 and absolute priority 

 8 

Let us note a significant difference between the behavior of individual characteristics for 9 

the relative and absolute priorities. Indeed, in the absolute priority for red-type patients, other-10 

type patients "do not exist". The result is that for the highest possible arrival intensities,  11 

e.g., the mean sojourn time for a red-type patient is visibly above 8 hours in the case of relative 12 

priority and about 7 hours in the case of absolute priority.  13 

 14 

Scenario no. 2 15 

In Scenario no. 2, we leave the number of possible diagnostic paths, the parameters of their 16 

distributions, and the frequencies of occurrence of successive types of patients unchanged.  17 

In this model, however, we will assume that the longest-lasting diagnostic paths (i.e., those with 18 

the lowest values of parameters 𝜇𝑖
(𝑗)

) appear the least frequently in practice, and most often 19 
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those in which the diagnostic and therapeutic process lasts the shortest. The parameters of the 1 

model under consideration are presented in Table 2.  2 

Table 2. 3 
Model parameters for Scenario no. 2 4 

Patient type (𝒋) Parameter 

Number  

of diagnostic 

paths 

(𝒌𝒋) 

Frequency 

(𝒒𝒋) 

Parameters of different-path 

service times  

(𝝁𝒊
(𝒋)

, 𝒊 = 𝟏, … , 𝒌𝒋) 

Frequencies of 

choosing a particular 

path 

(𝒑𝒊
(𝒋)

, 𝒊 = 𝟏, … , 𝒌𝒋) 

Red 5 0.10 (0.10, 0.20, 0.30, 0.40, 0.50)  (0.1, 0.1, 0.1, 0.3, 0.4) 

Orange 4 0.15 (0.25, 0.35, 0.40, 0.50)  (0.1, 0.2, 0.3, 0.4) 

Yellow 3 0.20 (0.30, 0.40, 0.50) (0.1, 0.4, 0.5) 

Green 2 0.15 (0.40, 0.55) (0.4, 0.6) 

Blue 1 0.40 (0.50) (1.0) 

 5 

In Figures 5-6, the mean waiting times and the mean numbers of patients waiting in the line 6 

are visualized, respectively, for the case of the relative priority, in dependence on the 7 

accumulated arrival intensity 𝜆. Corresponding results for the absolute priority are presented in 8 

Figures 7-8. 9 

  

Figure 5. Mean waiting time for Scenario 

no. 2 and relative priority 

Figure 6. Mean number of patients waiting 

in the queue for Scenario no. 2 and relative 

priority 

  

  

Figure 7. Mean waiting time for Scenario no. 2 

and absolute priority 

Figure 8. Mean number of patients waiting in 

the queue for Scenario no. 2 and absolute 

priority 
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Let us observe that in the case of Scenario no. 2, the mean waiting time and the mean number 1 

of patients waiting in the line (queue) for any lower-priority patient are always less than the 2 

corresponding values for a higher-priority one. 3 

 4 

Scenario no. 3  5 

In the last scenario, let us consider the situation in which the frequencies of occurrence of 6 

each type of patient are the same and equal 0.20. We have five different diagnostic paths for 7 

any patient, described by exponential distributions with the same parameters. The essential 8 

difference is that the frequency of choosing the longest-lasting one is the greatest for the red-9 

type patient and the smallest for the blue-type patient. All values of parameters of the considered 10 

model are presented in Table 3. 11 

Table 3. 12 
Model parameters for Scenario no. 3 13 

Patient type 

(𝒋) 

Parameter 

Number  

of diagnostic 

paths 

(𝒌𝒋) 

Frequency 

(𝒒𝒋) 

Parameters of different-

path service times  

(𝝁𝒊
(𝒋)

, 𝒊 = 𝟏, … , 𝒌𝒋) 

Frequencies of choosing  

a particular path 

(𝒑𝒊
(𝒋)

, 𝒊 = 𝟏, … , 𝒌𝒋) 

Red 5 0.20 (0.10, 0.20, 0.30, 0.40, 0.50)  (0.35, 0.25, 0.20, 0.15, 0.05) 

Orange 5 0.20 (0.10, 0.20, 0.30, 0.40, 0.50) (0.30, 0.25, 0.20, 0.15, 0.10) 

Yellow 5 0.20 (0.10, 0.20, 0.30, 0.40, 0.50) (0.10, 0.20, 0.40, 0.20, 0.10) 

Green 5 0.20 (0.10, 0.20, 0.30, 0.40, 0.50) (0.10, 0.15, 0.20, 0.25, 0.30) 

Blue 5 0.20 (0.10, 0.20, 0.30, 0.40, 0.50) (0.05, 0.15, 0.20, 0.25, 0.35) 

 14 

In Figures 9-10 the results for the mean sojourn time and the mean number of patients 15 

present in the system are shown, respectively, for the relative priority. The corresponding results 16 

for the absolute priority are presented in Figures 11-12. Let us note that in the considered model, 17 

an "approximate" equilibrium occurs in the case of the mean sojourn time, i.e., for the certain 18 

intensity of patient arrival, the mean waiting time is approximately the same for all-type 19 

patients. 20 

  

Figure 9. Mean sojourn time for Scenario no. 3 

and relative priority 

Figure 10. Mean number of patients for 

Scenario no. 3 and relative priority 
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Figure 11. Mean sojourn time for Scenario no. 3 

and absolute priority 

Figure 12. Mean number of patients for 

Scenario no. 3 and absolute priority 

5. Conclusions 1 

The paper proposed a queueing model of patient service in a hospital emergency 2 

department, compliant with the currently used S.T.A.R.T standard. The model assumed two 3 

types of priority patient service depending on their health condition: service with absolute 4 

priority and relative priority. The results for the average sojourn time of the each-type patient, 5 

the average waiting time for the start of the diagnostic process, as well as for the mean number 6 

of patients present in the system and the mean number of patients waiting in the queue were 7 

obtained. Analytical results were illustrated by numerical calculations considering three 8 

different scenarios. The proposed model creates vast application possibilities for a more precise 9 

assessment and optimization of the work of the hospital emergency department in various 10 

conditions that are planned in the future. 11 
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