
S I L E S I A N U N I V E R S I T Y O F T E C H N O L O G Y P U B L I S H I N G H O U S E

SCIENTIFIC PAPERS OF SILESIAN UNIVERSITY OF TECHNOLOGY 2022

ORGANIZATION AND MANAGEMENT SERIES NO. 167

http://dx.doi.org/10.29119/1641-3466.2022.167.11 http://managementpapers.polsl.pl/

RANDOMNESS TESTING OF THE RANDOM NUMBER 1

GENERATORS USING DIEHARDER TOOL 2

Piotr P. JÓŹWIAK1*, Ireneusz J. JÓŹWIAK2, Krzysztof JUSZCZYSZYN3, 3

Tomasz MAŁACHOWSKI4 4

1 Wroclaw University of Science and Technology; piotr.jozwiak@pwr.edu.pl, ORCID: 0000-0002-5325-3728 5
2 General T. Kościuszko Military University of Land Forces in Wrocław; ireneusz.jozwiak@awl.edu.pl, 6

ORCID: 0000-0002-2160-7077 7
3 Wroclaw University of Science and Technology; krzysztof.juszczyszyn@pwr.edu.pl, 8

ORCID: 0000-0002-9326-6734 9
4 Wroclaw University of Science and Technology; malachowski.tomasz@outlook.com, 10

ORCID: 0000-0002-4626-7902 11
* Correspondence author 12

Purpose: The aim of the research is to determine whether the Dieharder battery of statistical 13

tests suite is able to demonstrate the superiority of the true random number generator over 14

pseudorandom number generators. 15

Design/methodology/approach: Based on a number of random number sequences obtained 16

from different generators, the randomness of these sequences was tested and the results obtained 17

were compared between different classes of random number generators. 18

Findings: The research indicated that we are not able to determine in a positive sense the quality 19

of a given generator on the basis of statistical testing with a Dieharder battery, but only able to 20

determine whether there are no grounds to reject the generator as non-random. Statistical testing 21

only has the character of a negative criterion. 22

Originality/value: The research carried out provides an answer to the question of whether 23

statistical randomness testing with a battery of Dieharder tests can provide information about 24

the level of randomness of a given generator in relation to another generator, when both random 25

sequences have passed the tests. The results of the research indicate that additional quality 26

criteria should be taken into account when selecting a random number generator that passes the 27

statistical tests in order to unambiguously answer which generator is better. 28

Keywords: strategy of randomness testing, random number generator, quantum cryptography, 29

Dieharder. 30

Category of the paper: Research paper. 31

 32

152 P.P. Jóźwiak, I.J. Jóźwiak, K. Juszczyszyn, T. Małachowski

1. Introduction 1

One of the many characteristics of the world around us is randomness. Randomness is 2

understood as the lack of connection between events or the lack of predictability of these events 3

and their causality. What for a human may be a random event, from the mathematics point of 4

view may not. Encryption is a good example of this. 5

Randomness is fundamental in many algorithms, not only in computer science. However, 6

good quality random numbers are essential for developing secure cryptography methods. 7

However, testing random number generators, due to its non-deterministic nature, 8

is a complex issue (Kałuski, 2012). Therefore, the Dieharder tool (Brown, 2022) was proposed 9

to determine whether the tested generator has the characteristics of a good quality random 10

number generator. In this paper, an analysis of randomness testing of different random number 11

generators will be conducted. The study uses the Dieharder tool used in randomness testing of 12

pseudorandom and random number generators. Based on the generators built there, as well as 13

statistical tests, testing of the quality of the random numbers generated was carried out. The aim 14

of this paper is to try to determine whether the battery of Dieharder tests will indicate the 15

superiority of truly random generators over pseudo-random generators. This includes a new 16

class of quantum generators that fundamentally deliver unpredictability and randomness 17

according to the Copenhagen interpretation of quantum mechanics. 18

2. Characteristics of the used sources of randomness 19

The literature distinguishes two basic classes of random number generators (L'Ecuyer, 20

2021): 21

 Pseudo random number generators – PRNG. 22

 True random number generators - TRNG. 23

Pseudo random numbers can be obtained from mathematical algorithms. Generators of this 24

type require an initial entropy seed to be supplied to the generator input (Marsaglia, 2003). 25

The next state is generated deterministically by applying a mathematical function. These are 26

the so-called LCG (Linear Congruential Generator) generators. Generators of this type have the 27

serious drawback of a limited number of states. After a certain number of steps of the generator 28

the internal state loops and the generator repeats its work. This type of behaviour makes it 29

possible to predict each subsequent state of the generator, especially if the attacker knows the 30

seed used to run the generator. Despite these drawbacks, due to the high speed of these 31

generators, they also find application in cryptography. 32

Randomness testing of the random number generators… 153

The second group of number generators are true random number generators. They differ 1

significantly from pseudorandom number generators. These numbers can be obtained from 2

various sources of physical phenomena by using magnetic fields, light intensity, sound waves, 3

or quantum phenomena (Jian, et al., 2011). A good example of generating truly random 4

numbers is a generator using the decay of radioactive elements. However, these generators are 5

slow. They are chosen when the quality of the numbers generated is more important than the 6

quantity. 7

There are many more practical quantum phenomena which can be considered as good 8

candidate processes for the truly non-deterministic randomness generation. An in-detail study 9

can be found in (Jacak, Jóźwiak et al., 2021) mainly focusing on quantum shot noise as well as 10

on quantum optics. It is possible to consider quantum phenomena in nano-plasmonics as well, 11

yet of a lesser practical significance (Jacak, 2020). Furthermore quantum entanglement 12

independently of its technical implementations can bring important advantages in efficient 13

randomness testing (Jacak, J., Jacak, W. et al., 2020), which is of critical role for implementing 14

Quantum Key Distribution (Jacak, M., Jacak, J. et al., 2016; Jacak, Mielniczuk et al., 2015). 15

Hardware randomness generators should be equipped with internal testing devices. 16

However, this type of approach is not trivial when using phenomena of the surrounding nature. 17

Therefore, the most common choice is an empirical approach (Knuth, 1997), in particular 18

statistical randomness testing. The most important implementations of the tests are the NIST 19

(Rukhin et al., 2010) and Dieharder (Hotoleanu et al., 2010; Brown, 2022; Suresh et al., 2013; 20

Vascova et al., 2010) batteries. In this paper, a set of Dieharder tests was chosen to study 21

generators. Note that in addition to empirical implementations of the tests, methods for quantum 22

generator properties are detailed. 23

Three algorithmic pseudo-random number generators were used for the study: 24

 rand() - C/C++ library function used to generate a random number. Does not allow the 25

initial entropy to be given as a seed. Used as a known very weak source of random 26

numbers, 27

 ran1 (Class Ran1, 2022) - a generator developed by Park and Miller (Park et al., 1988) 28

with the Bays-Durham shuffling algorithm (Bays et al., 1976), 29

 random256-glibc2 generator from GNU C library. 30

Another pseudorandom number generator uses a virtual device on a unix machine. 31

This solution is based on generating random numbers based on interrupts occurring in the 32

system from device drivers and other events in the operating system: 33

 /dev/urandom - random number generator using system events to obtain. 34

A triple pendulum has been used as an example of a generator using a physical phenomenon. 35

Such a implementation becomes a chaotic system when tilted appropriately (Stachowiak et al., 36

2006; Botha et al., 2013). The generator is an implementation based on the work of (Nouar 37

et al., 2020) and (Awrejcewicz et al., 1999). Three masses are sequentially connected to each 38

other by inextensible rods, and the first one is additionally attached to a fixed point in space. 39

154 P.P. Jóźwiak, I.J. Jóźwiak, K. Juszczyszyn, T. Małachowski

This is a physical phenomenon whose behavioural description we are able to calculate. In the 1

literature this effect is known as the "Butterfly Effect": 2

 Triple pendulum (Małachowski, 2021). 3

As a counterbalance to the pseudo-random generators discussed earlier, a sequence of 4

numbers generated by a quantum random number generator called: 5

 ANU QRNG (Małachowski, 2021). 6

Unlike previous generators, this generator is fully non-deterministic. This generator was 7

developed at the Australian National University (ANU). The generation of random numbers is 8

carried out on the basis of phenomena occurring in a vacuum (Botha et al., 2013). As the authors 9

of this generator point out, the definition of a vacuum in classical terms differs from the 10

quantum definition. In classical physics, a vacuum is considered as a space that is empty of 11

matter or photons. Quantum physics however says that same space resembles a sea of virtual 12

particles appearing and disappearing all the time. These particles produce a magnetic field that 13

causes minute changes in phase and amplitude at all frequencies of the waves passing through 14

the field (ANU QRNG, 2022). The researchers, by using a laser, are able to read these 15

differences, allowing for a high-throughput quantum generator. The authors of the solution 16

provide an API in which quantum random number strings can be obtained on the project website 17

(ANU QRNG 2022). For the research in this paper, the mentioned API was used to obtain test 18

samples. 19

3. Statistical testing of randomness with Dieharder test suite 20

Empirical randomness testing uses various types of statistical methods to test for 21

randomness based on hypothesis testing. Generally, in this type of testing, the null hypothesis 22

𝐻0 is set, which generally reads: the sequence under test is random. Directly related to the 23

definition of the null hypothesis is the alternative hypothesis 𝐻1, which takes the opposite claim 24

to 𝐻0, namely that: the sequence under test is not random. Initially, the position is taken that 25

the null hypothesis is true and, on the basis of a given statistical test, an attempt is made to show 26

that it is not. If the test is confirmatory then the null hypothesis is rejected and the alternative 27

hypothesis is accepted as valid for the given random sequence under test. Otherwise, there is 28

no basis for rejecting the null hypothesis 𝐻0 (Bobrowski, 1986). 29

Directly connected with hypothesis testing is the determination of the significance level 30

𝛼 for a given test. For the adopted significance level 𝛼 there is a critical area 𝑅𝛼. If the value of 31

the 𝐾 statistic does not belong to the critical area 𝑅𝛼, we have no grounds to reject the 32

hypothesis of randomness of the sample. Otherwise, we reject the null hypothesis and accept 33

the alternative one that the sample is not random. A significance level of 𝛼 = 0.005 was 34

assumed in the conducted study. 35

Randomness testing of the random number generators… 155

To allow easier analysis of results, each statistical test provides a result in the form of 1

a number called 𝑃𝑣𝑎𝑙𝑢𝑒. Each 𝑃𝑣𝑎𝑙𝑢𝑒 is the probability that an ideal random number generator 2

would generate a sequence of numbers less random than the sequence being tested. Note that if 3

𝑃𝑣𝑎𝑙𝑢𝑒 for the test equals 0, then the sequence of numbers appears to be completely non-random. 4

This is because we need to perform many statistical tests in order to accurately test a sequence 5

of numbers against the null hypothesis of randomness. Each statistical test examining different 6

characteristics provides a non-normal value of the statistic. Only the calculation of 𝑃𝑣𝑎𝑙𝑢𝑒 7

introduces a standardised measure for the entire set of statistical tests. 8

A positive pass of a given statistical test is taken to mean that the inequality 𝑃𝑣𝑎𝑙𝑢𝑒 > 𝛼 9

must be satisfied. In addition, in order to consider that a given sequence does not show basis 10

for rejecting the hypothesis of its randomness, the sequence must obtain positive results for all 11

tests in the battery. 12

The Dieharder statistical test battery (Brown, 2022) was developed by Robert G. Brown 13

based on the Diehard test battery proposed by George Marsaglia (Marsaglia, 1996). The author 14

has improved and developed the basic battery with additional statistical tests. The current 15

version 3.31.1 has 31 implemented tests listed in table 1. Not all tests are considered reliable, 16

therefore the author of this paper marks 4 tests as not recommended in randomness testing. 17

In this paper the non-recommended tests have been omitted. 18

4. Description of research method 19

Test samples with sizes close to 5GB were obtained from each of the six generators. 20

Each test from the Dieharder battery was repeated a hundred times in five iterations, obtaining 21

multiple 𝑃𝑣𝑎𝑙𝑢𝑒 for each test of a given generator. This fulfils the requirement for multiple string 22

testing to minimise the possibility of confusion. Finally, the Kolmogorov-Smirnov statistic is 23

calculated. This test is designed to verify that for a given significance level 𝛼 = 0.005 the 24

obtained distribution of 𝑃𝑣𝑎𝑙𝑢𝑒 values is consistent with the theoretical uniform distribution. 25

Application of this test allows to obtain an unambiguous answer whether a given generator can 26

be considered random. The Python library scipy.stats and the kstest test were used to calculate 27

the statistic. The library easily allows to calculate the Kolmogorov-Smirnov consistency test 28

providing the result in the form of normalized 𝑃𝑣𝑎𝑙𝑢𝑒. 29

In addition, the final value calculated for the tested generators will answer the question of 30

whether the battery of Dieharder tests will be able to show that the quantum random number 31

generator is superior to algorithmic generators. If this is the case, then the Kolmogorov-Smirnov 32

test should show a better distribution of 𝑃𝑣𝑎𝑙𝑢𝑒 derived from individual statistical tests for this 33

generator relative to deterministic generators. 34

156 P.P. Jóźwiak, I.J. Jóźwiak, K. Juszczyszyn, T. Małachowski

Table 1. 1
Randomnes test results obtained using the Dieharder test battery 2

No. Test name Test

status

Random number generators test results

rand() ran1 random256

glibc

/dev/

urandom

triple

pendulum

ANU

QRNG

1. Diehard Birthdays Good passed passed passed passed passed passed

2. Diehard OPERM5 Good passed passed passed passed passed passed

3. Diehard 32x32

Binary Rank
Good

passed passed passed passed passed passed

4. Diehard 6x8

Binary Rank
Good

failed passed passed passed passed passed

5. Diehard Bitstream Good failed passed passed passed passed passed

6. Diehard OPSO Suspected skipped

7. Diehard OQSO Suspected skipped

8. Diehard DNA Suspected skipped

9. Diehard Count the

1s (stream)
Good

failed passed passed passed passed passed

10. Diehard Count the

1s Test (byte)
Good

failed passed passed failed passed passed

11. Diehard Parking

Lot
Good

passed passed passed passed passed passed

12. Diehard Minimum

Distance

(2d Circle)

Good

passed passed passed passed passed passed

13. Diehard 3d Sphere

(Minimum

Distance)

Good

passed passed passed passed passed passed

14. Diehard Squeeze Good passed passed passed passed passed passed

15. Diehard Sums Bad skipped

16. Diehard Craps Good passed passed passed passed passed passed

17. Marsaglia and

Tsang GCD
Good

failed passed passed passed passed passed

18. STS Monobit Good passed passed passed passed passed passed

19. STS Runs Good passed passed passed passed passed passed

20. STS Serial

(Generalized)
Good

passed passed passed passed passed passed

21. Diehards Runs Good passed passed failed passed passed passed

22. RGB Generalized

Minimum

Distance

Good
failed passed passed passed passed passed

23. RGB

Permutations
Good

passed passed passed passed passed passed

24. RGB Lagged Sum Good passed passed passed passed passed passed

25. RGB

Kolmogorov-

Smirnov

Good

passed passed passed passed passed passed

26. Byte Distribution Good failed passed passed passed passed passed

27. DAB DCT Good failed passed passed passed passed passed

28. DAB Fill Tree Good passed passed passed passed passed passed

29. DAB Fill Tree 2 Good failed passed passed passed passed passed

30. DAB Monobit 2 Good failed passed passed passed passed passed

 3

Randomness testing of the random number generators… 157

5. Results 1

The test results based on 𝑃𝑣𝑎𝑙𝑢𝑒 for all iterations are presented in table 1. It is impossible to 2

present the exact 𝑃𝑣𝑎𝑙𝑢𝑒 in a concise form, so the final judgment based on the calculated 𝑃𝑣𝑎𝑙𝑢𝑒 3

is presented. A test was considered to have failed if at least one iteration of the test failed. 4

The generators rand(), random256-glibc2 and /dev/urandom were qualified as not random 5

for a given level of significance. No basis was found to reject the hypothesis of randomness for 6

the generators ran1, triple pendulum and ANU QRNG. 7

Table 2 shows the results of calculating the final Kolmogorov-Smirnov consistency test for 8

the obtained 𝑃𝑣𝑎𝑙𝑢𝑒𝑠. 9

Table 2. 10

Kolmogorov-Smirnov consistency test for the obtained 𝑃𝑣𝑎𝑙𝑢𝑒𝑠. 11

Generator Kolmogorov-Smirnov uniformity test 𝑃𝑣𝑎𝑙𝑢𝑒 Result

rand() 6.18 ∙ 10−23 failed

ran1 0.40815 passed

random256-glibc2 0.19808 passed

/dev/urandom 0.06175 passed

triple pendulum 0.19757 passed

ANU QRNG 0.03800 passed

6. Summary and discussion 12

The obtained results confirm that algorithmic pseudorandom number generators are 13

generally of low quality. This was particularly evident for the rand() generator from the 14

standard C/C++ library. The random256-glibc2 and /dev/urandom generators using system 15

interrupts performed slightly better. This may seem quite unexpected, as it is a generator that 16

does not use a specific mathematical algorithm. However, if you consider the fact that in the 17

operating system many interrupts are executed in a cyclic manner, you can expect a certain 18

repetitiveness that will manifest itself in the generated numbers. The only algorithmic generator 19

that passed all the tests positively is the ran1 generator. The tests for the triple pendulum 20

generator were also positive, which confirms that the chaotic nature of this classical 21

phenomenon is so high that statistical tests are unable to find determinism. The ANU QRNG 22

quantum generator, as expected, passed the test positively. 23

It remained to answer the question whether, based on the obtained results, we are able to 24

indicate which generator is a truly random generator, e.g. a quantum generator. For this purpose, 25

the Kolmogorov-Smirnov test was performed, the results of which are presented in table 2. 26

The value of this test determines the uniformity of the distribution of all 𝑃𝑣𝑎𝑙𝑢𝑒 values. 27

The Kolmogorov-Smirnov test itself, from the Python library scipy.stats, provides a result in 28

158 P.P. Jóźwiak, I.J. Jóźwiak, K. Juszczyszyn, T. Małachowski

the form of a 𝑃𝑣𝑎𝑙𝑢𝑒 specifying the probability that the two distributions are identical. 1

It is expected that this value should be as high as possible. Which would indicate a good 2

distribution of values with respect to the theoretical uniform distribution. As can be seen from 3

the above results in table 2, the ANU QRNG quantum generator received a lower score than 4

other deterministic generators. Thus, the result did not confirm the high fit of the two 5

distributions, which does not prejudge the non-randomness of a given generator. It follows that 6

we are not able on the basis of statistical hipotesis testing with the Dieharder battery to 7

determine additionally the quality of a given generator, but only to determine whether there are 8

no basis to reject the generator as non-random. Statistical testing only has the character of 9

a negative criterion. In the absence of basis to reject the hypothesis of randomness, statistical 10

testing does not provide a mechanism to account for how positive the tested sequence of 11

numbers was. Thus, a quantum generator in a positive way is not distinguishable in statistical 12

testing from deterministic generators. 13

References 14

1. ANU QRNG. Australian National University. Available online https://qrng.anu.edu.au/, 15

4.03.2022. 16

2. Awrejcewicz, J., Kudra, G. (1999). Nonlinear dynamics of a triple physical pendulum. 17

2nd National Conference, Methods and Computer Systems in Scientific Research and 18

Engineering Design, pp. 231-236. 19

3. Bays, C., Durham, S. (1976). Improving a Poor Random Number Generator. ACM 20

Transactions on Mathematical Software, Vol. 2, No. 1. 21

4. Bobrowski, D. (1986). Probabilistyka w zastosowaniach technicznych. Warszawa: WNT. 22

5. Botha E., Qi, G. (2013). Analysis of the Triple Pendulum as a Hyperchaotic System. 23

Physics. 24

6. Brown, R.G., Dieharder: A Random Number Test Suite. Retrieved from: 25

https://webhome.phy.duke.edu/~rgb/General/dieharder.php, 4.03.2022. 26

7. Class Ran1-Random-Number-Generator. Available online https://cl-variates.common-27

lisp.dev/documentation/cl-variates-package/class-ran1--random--number--generator.html, 28

4.03.2022. 29

8. Hotoleanu, D., Cret, O., Suciu, A., Gyorfi, T., Vacariu, L. (2010). Real-time testing of true 30

random number generators through dynamic reconfiguration. 13th Euromicro Conf. on 31

Digital System Design: Architectures, Methods and Tools. IEEE, pp. 247-250. 32

9. Jacak, J., Jacak, W., Donderowicz, W., Jacak, L. (2020). Quantum random number 33

generators with entanglement for public randomness testing. Scientific Reports, vol. 10, 34

no. 164. 35

Randomness testing of the random number generators… 159

10. Jacak, M., Jacak, J., Jóźwiak, P.P., Jóźwiak, I.J. (2016). Quantum cryptography: Theoretical 1

protocols for quantum key distribution and tests of selected commercial QKD systems in 2

commercial fiber networks. International Journal of Quantum Information, vol. 14, no. 2, 3

1630002. 4

11. Jacak, M., Jóźwiak, P.P., Niemczuk, J., Jacak, J. (2021). Quantum generators of random 5

number. Scientific Reports, vol. 11, 16108. 6

12. Jacak, M., Melniczuk, D., Jacak, J., Jóźwiak, I.J., Gruber, J., Jóźwiak, P.P. (2015). Stability 7

assessment of QKD procedures in commercial quantum cryptography systems versus 8

quality of dark channel. International Journal of Quantum Information, vol. 13, no. 8, 9

1550064. 10

13. Jacak, W. (2020). Quantum nano-plasmonics. Cambridge University Press, ISBN 11

9781108777698. 12

14. Jian, Y., Ren, M., Wu, E., Wu, G., Zeng, H. (2011). Two-bit quantum random number 13

generator based on photon-number-resolving detection. Review of Scientific Instruments. 14

15. Kałuski, J. (2012). Logika podejmowania decyzji. Podejmowanie decyzji w aspektach 15

logiki klasycznej i logiki kwantowej. Gliwice: Zeszyty Naukowe Politechniki Śląskiej, 16

no. 1873, pp. 191-219. 17

16. Knuth, D.E. (1997). The Art of Computer Programming, Vol. 2. New York: Addison 18

Wesley. 19

17. L’Ecuyer, P. (2004). Random number generation. Berlin: Center for Applied Statistics and 20

Economics, Humboldt – Universitaet Berlin. 21

18. Małachowski, T. (2021). Analiza porównawcza metod generowania liczb pseudolosowych. 22

(Master’s thesis) Wrocław: Politechnika Wrocławska, Wydział Informatyki i Zarządzania. 23

19. Marsaglia, G. (1996). Diehard: a battery of tests of randomness. Retrieved from: 24

http://stat.fsu.edu/geo/diehard.html, 5.03.2022. 25

20. Marsaglia, G. (2003). Seeds for random number generators. Commun. ACM. Retrieved 26

from: https://doi.org/10.1145/769800.769827, 5.03.2022. 27

21. Nouar, C., Guennoun, Z. (2020). A Pseudo-Random Number Generator Using Double 28

Pendulum. Applied Mathematics & Information Sciences, 14. pp. 977-984. 29

22. Park, S.K., Miller, K.W. (1988). Random Number Generators: Good ones are hard to find. 30

Computing Practices, Comm. Of the ACM, Vol. 31, No. 10. 31

23. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, 32

M., Banks, D., Heckert, A., Dray, J., Vo, S. (2010). A Statistical Test Suite for Random and 33

Pseudorandom Number Generators for Cryptographic Applications. USA: National 34

Institute of Standards and Technology. 35

24. Stachowiak, T., Okada, T. (2006). A numerical analysis of chaos in the double pendulum. 36

Chaos, Solutions and Fractals, 29(2). Elsevier, pp. 417-422. 37

160 P.P. Jóźwiak, I.J. Jóźwiak, K. Juszczyszyn, T. Małachowski

25. Suresh, V.B., Antonioli, D., Burleson, W.P. (2013). On-chip lightweight implementation of 1

reduced NIST randomness test suite. IEEE Int. Symposium on Hardware-Oriented Security 2

and Trust (HOST). IEEE, pp. 93-98. 3

26. Symul, T., Assad, S.M., Lam, P.K. (2013). Real time demonstration of high bitrate quantum 4

random number generation with coherent laser light. Appl. Phys. Lett., 98, 231103. 5

27. Vascowa, A., Lopez-Ongil, C., Jimenez-Horas, A., San Millan, E., Entrena, L. (2010). 6

Robust cryptographic ciphers with on-line statistical properties validation. 16th Int. 7

Symposium on On-line Testing Symposium (IOLTS). IEEE, pp. 208-210. 8

