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Purpose: Option pricing is hardly a new topic, however, in many cases they lack an analytical 10 

solution. The article proposes a new approach to option pricing based on the semi-analytical 11 

Trefftz method. 12 

Design/methodology/approach: An appropriate transformation makes it possible to reduce the 13 

Black-Scholes equation to the heat equation. This admits the Trefftz method (which has shown 14 

its effectiveness in heat conduction problems) to be employed. The advantage of such  15 

an approach lies in its computational simplicity and in the fact that it delivers a solution 16 

satisfying the governing equation. 17 

Findings: The theoretical option pricing problem being considered in the paper has been solved 18 

by means of the Trefftz method, and the results achieved appear to comply with those taken 19 

from the Black-Scholes formula. Numerical simulations have been carried out and compared, 20 

which has confirmed the accuracy of the proposed approach.  21 

Originality/value: Although a number of solutions to the Black-Scholes model have appeared, 22 

the paper presents a thoroughly novel idea of implementation of the Trefftz method for solving 23 

this model. So far, the method has been applied to problems having nothing in common with 24 

finance. Therefore the present approach might be a starting point for software development, 25 

competitive to the existing methods of pricing options. 26 

Keywords: contract options, option pricing, Black-Scholes model, Trefftz method. 27 

Category of the paper: Research paper. 28 

1. Introduction  29 

Creating innovative financial instruments which provide the investor with the possibility of 30 

risk reduction and hedging against unfavorable price movements in the underlying asset as well 31 

as securing above-average returns on investment are crucial for financial market development. 32 
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Option contracts play a special role among these instruments. All option contracts give holders 1 

the right, but not the obligation, to buy or sell the underlying instrument at a predetermined 2 

price and at a specified time. 3 

Although it has been nearly 50 years since the seminal work on option pricing by Fischer 4 

Black, Myron Scholes and Robert Merton was published, dedicated research is underway to 5 

formulate a model that would allow fair option pricing, which is particularly relevant to 6 

financial research areas. Since the introduction of the Black-Scholes formula for option pricing, 7 

numerous analytical, numerical (using Monte Carlo simulations) methods and such that 8 

combine the previously mentioned approaches (i.e. analytical approximation models) have been 9 

developed. 10 

Approximate methods of determining an option price were used in, among others, the works 11 

by M.J. Brennan and E.S. Schwartz (1977) and G. Courtadon (1982). Their idea was to solve 12 

the Black-Scholes differential equation numerically (they undertook one of the most 13 

challenging problems in derivatives, which is the valuation and optimal exercise of American 14 

options). J. Hull and A. White (1990) also adopted this approach. In the literature on the subject, 15 

simulation techniques (Boyle, 1977), estimation techniques (Duffie, and Glynn, 1996) and the 16 

martingale pricing approach were used. 17 

The aim of the paper is to apply the Trefftz method to find an approximate solution to  18 

a differential equation describing the price of derivatives. The method has already been 19 

successfully applied to solving either direct or inverse problems in mechanics.  20 

In general, a complete mathematical description of a physical phenomenon leads to  21 

an equation (usually a differential equation) which governs the process. Not only the equation 22 

needs to be established but also 23 

 geometric properties (size and shape) of a body to which the equation applies, 24 

 physical properties of the material, 25 

 boundary and/or initial conditions.  26 

If any of the above model elements is unknown, we deal with an inverse problem where, 27 

figuratively speaking, the effects are known while the causes have to be found. According to 28 

the classification proposed in (Ozisik, and Orlande, 2000), inverse problems include those 29 

concerning identification of  30 

 shape of a body where the process takes place, 31 

 boundary/initial values,  32 

 source functions, 33 

 material properties (parameter estimation). 34 

The inverse problems like those addressed in (Beck, and Woodbury, 2016; Grysa, 2010; 35 

Maciąg, 2009; Ozisik, and Orlande, 2000) belong to ill-posed problems (Hadamard, 1902) and 36 

require efficient and robust solution methods. Such requirements are met by the numerical-37 
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analytical Trefftz method which can be applied even when the boundary or/and initial 1 

conditions are not fully known (Grysa, 2010; Maciąg, 2009). 2 

In option pricing problems the issue is to determine the premium of the option which means 3 

that the initial condition has to be estimated. Hence we deal with an inverse problem.  4 

The present paper shows, to the best knowledge of the authors, the very first application of the 5 

Trefftz method to calculate an option exercise price. The solutions to the Black-Scholes 6 

equation for European put and call options obtained by the Trefftz method are compared with 7 

those taken from the Black-Scholes formula under the assumption of log-normal distribution in 8 

the pricing model. 9 

The paper begins with a brief introduction to derivatives market, in particular European-10 

style options. It provides the reader with essentials of the Black-Scholes model commonly used 11 

for option pricing. Also, it introduces the so-called Trefftz functions which we employ for the 12 

solution and it gives the general characteristics of the Trefftz method itself. The main part of 13 

the paper shows, based on numerical simulations, evaluation of European option prices using 14 

the Black-Scholes in comparison with the results by the Trefftz method. The obtained results 15 

are supposed to be the basis for further study aimed to develop original software for option 16 

pricing concerning more complicated cases than standard European options. 17 

2. The idea of contract options  18 

An option is a contract that gives the buyer the right to buy (long call) or sell (long put)  19 

an option and obliges the seller (short position) to deliver or receive a fixed amount of the 20 

underlying asset at a specified (fixed) price (the so-called strike price or exercise price) within 21 

a specified date (the so-called maturity or expiry date). The strike price is the basis for 22 

determining the option settlement amount – the relationship between an option strike price and 23 

the underlying stock’s spot price determines the option value. Options are generally used for 24 

hedging purposes but can also be used for speculation.  25 

One of the most important features that distinguishes option contracts from forward or 26 

futures contracts is the asymmetry of the payout profile (the value of an option at its expiry), 27 

i.e. the option holder has the right and not the obligation to exercise the option. In return for the 28 

acquired right (privilege), the option buyer pays the seller a so-called option premium.  29 

The value of the premium depends on many factors, in particular, on the fluctuations in the 30 

quotation of the underlying instrument being the subject of the transaction (the higher the 31 

volatility of the underlying instrument, the higher the option price) and the option strike price 32 

(the price at which the option is settled, the higher the call option exercise price, the lower its 33 

market price). In the case of a put option, the relationship is reversed – the higher the strike 34 

price, the more the option is worth. 35 
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Volatility is a measure of uncertainty or risk related to the size of changes in the underlying 1 

stock price (traditionally, it is viewed as synonymous with variance risk and can be thought of 2 

as a proxy of market risk). Volatility is also the most difficult factor to estimate. It determines 3 

the future volatility of the underlying asset during the life of the option. Therefore, forecasting 4 

volatility is the first step in valuating options. The literature on the subject describes many 5 

techniques developed to do this: a technique based on historical volatility (also known as 6 

realized volatility or statistical volatility), in which the volatility is determined on the basis of 7 

the historical prices of the underlying asset, and an implied volatility approach based on the 8 

current prices of transactions in options (Piontek, 2020; Rubaszek, 2012). Implied volatility 9 

represents the expectations of market participants towards a change in the underlying 10 

instrument. The algorithm for determining the implied volatility of the WIG20 index is 11 

available on the WSE website. 12 

Another factor which impacts option valuation is interest rate (for a standard option pricing 13 

model like Black-Scholes, the risk-free one-year Treasury bills rates are used). Change in the 14 

risk-free interest rate impacts call and put option premiums inversely: calls benefit from rising 15 

rates while puts lose value. The opposite is true when interest rates fall. 16 

It is worth noting that the risk for the buyer is limited to the amount of the premium and the 17 

potential profit may be unlimited, while the risk for the seller is unlimited and their potential 18 

profit is equal to the amount of the premium received.  19 

Option contracts (derivative instruments in general) can trade over-the-counter (OTC) or on 20 

an exchange. The most common underlying assets for derivatives are stocks, currencies, bonds, 21 

commodities and interest rates.  22 

The Warsaw Stock Exchange trades European-style options based on the WIG20 index 23 

(they debuted on the Warsaw bourse in September 2003). A characteristic feature of the 24 

European option is that its execution is restricted until the expiration date. However, it doesn’t 25 

mean, that you cannot sell or buy options at any time, because there is a possibility of buying 26 

or selling to “close” the position prior to expiration (www.gpw.pl/pub/GPW/files/PDF/ 27 

standardy_pl/Standard_opcje_WIG20, 2020). 28 

3. Black–Scholes model 29 

Determining the price of an option is used to estimate the fair value cost of an option under 30 

a given set of conditions at any moment of time. Due to the fact that the factors determining the 31 

price of an option, i.e. the value of the underlying instrument, its volatility, and the interest rate 32 

change randomly, the only way of knowing these parameters in advance is to use theoretical 33 

models (which are a simplified picture of reality). According to the literature, the search for 34 

rules governing the derivatives market began at the end of the 19th century, with the work of 35 
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L. Bachelier, R. Sage, C.M. Sprenkle, A.J. Boness (Weron, and Weron, 2008; Napiórkowski, 1 

2002) and undoubtedly F. Black, M. Scholes and R. Merton.  2 

The Black-Scholes model assumes that the price of traded assets follows a geometric 3 

Brownian motion with constant drift 𝜇 and volatility 𝜎, hence the change in the total value of 4 

stock (pricing process) {𝑆𝑡}𝑡 is given by: 5 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 (1) 

where:  6 

St – current stock (or other underlying) price,  7 

{𝑊𝑡}t – Wiener process (or standard Brownian motion, contains the information about the 8 

randomness of the asset price),  9 

𝑡 – time.  10 

 11 

The Wiener process {𝑊𝑡}𝑡 is a stochastic process defined by the following basic postulates:  12 

 𝑊0 = 0, 13 

 𝑊𝑡 is a stochastic process with independent normally distributed increments, 14 

∀𝑘≤𝑡 𝑊𝑡 − 𝑊𝑘 ~𝑁(0, 𝑡 − 𝑘) , where 𝑁(𝑚, 𝑠2) denotes the normal distribution with the 15 

expected value 𝑚 and the variance 𝑠2, 16 

 the process paths are continuous, however, the path is fractal, and not differentiable 17 

anywhere (Jakubowski, and Sztencel, 2001). 18 

Black and Scholes, when deriving their model, employ the following assumptions: 19 

 there is no arbitrage (there is no opportunity of making a riskless profit); 20 

 there exists a self-financing strategy; 21 

 the interest rates are assumed to be constant during the option expiry period; 22 

 stock prices are lognormally distributed; 23 

 the stock price is continuous – can be modelled by Ito's continuous stochastic process; 24 

 transactions costs and taxes are zero; 25 

 no dividends are paid out during the life of the option; 26 

 there is a possibility of a short sale. 27 

The above assumptions made it possible to reduce the problem of option pricing to the 28 

solution of the following equation, known in the literature as the Black-Scholes partial 29 

differential equation 30 

𝜕𝑌(𝑆𝑡,𝑡)

𝜕𝑡
= 𝑟𝑌(𝑆𝑡, 𝑡) − 𝑟𝑆𝑡

𝜕𝑌(𝑆𝑡,𝑡)

𝜕𝑆𝑡
−

1

2
𝜎2𝑆𝑡

2 𝜕2𝑌(𝑆𝑡,𝑡)

𝜕𝑆𝑡
2   (2) 

with the boundary condition: 31 

  32 
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 for a call option 1 

𝐶𝑇 = 𝑌(𝑆𝑇 , 𝑇) = {
𝑆𝑇 − 𝐾 for 𝑆𝑇 − 𝐾 ≥ 0 

0 for 𝑆𝑇 − 𝐾 < 0
     (3) 

 for a put option 2 

𝑃𝑇 = 𝑌(𝑆𝑇 , 𝑇) = {
𝐾 − 𝑆𝑇 for 𝐾 −  𝑆𝑇 ≥ 0 

0 for 𝐾 − 𝑆𝑇 < 0
     (4) 

where:  3 

r – risk-free interest rate,  4 

𝑇 – maturity time,  5 

𝑌(𝑆𝑡, 𝑡) – option price at time 𝑡,  6 

K –strike price. 7 

 8 

The above assumption about the lack of arbitrage and the existence of a self-financing 9 

strategy guarantees that it is possible to construct (from stocks and options) a risk-free portfolio 10 

(the so-called arbitrage portfolio) whose profitability is equal to the risk-free rate. 11 

Under assumptions and constraints stated above the Black-Scholes equation has analytical 12 

solution for European options given by formulas 13 

 the price of a call option 14 

𝐶𝑇 = 𝑆𝑇Φ(𝑑+) − 𝑒−𝑟𝑇𝐾Φ(𝑑−)     (5) 

 the price of a put option  15 

𝑃𝑇 = −𝑆𝑇Φ(−𝑑+) + 𝑒−𝑟𝑇𝐾Φ(−𝑑−)    (6) 

where: 16 

 is the cumulative normal distribution function;  17 

𝑑 is determined from the formula 18 

 19 

𝑑± =
ln(

𝑆𝑡
𝐾

)+(𝑟±
𝜎2

2
)(𝑇−𝑡)

𝜎√𝑇−𝑡
    (7) 

It is noteworthy that the Black-Scholes formula is correct when the short-term interest rate 20 

𝑟 is constant. In practice, it is assumed that the interest rate is equal to the risk-free interest rate 21 

for an investment with a maturity 𝑇 − 𝑡 (this type of analysis is usually performed on the basis 22 

of a yield curve using the Nelson-Siegel model) (Rubaszek, 2012). 23 

As mentioned above, at the time of pricing, all of the parameters used in the Black-Scholes 24 

model are clear and known; the only one that is not known with certainty (is not deterministic) 25 

is volatility 𝜎. In practice, to estimate 𝜎, it is usually assumed that future volatility equals 26 

historical volatility. A more advanced analysis of volatility consists in determining it based on 27 

building time series models (especially the ARCH class models), deriving the distribution of 28 

https://context.reverso.net/t%C5%82umaczenie/angielski-polski/it+is+noteworthy
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the volatility, or using the fundamental analysis of the factors determining the price of the basic 1 

instrument and making an expert forecast (Rubaszek, 2012). Recently a Black-Scholes model 2 

with GARCH volatility has been introduced (Gong et al., 2010; Kamiński, 2013).  3 

In the presented approach, we assume that the value of this parameter is known. 4 

Upon using the following substitutions in equation (2) 5 

𝑢 =
2

𝜎2
(𝑟 − 1

2
𝜎2) [𝑙𝑛 (

𝑆𝑡

𝐾
) − (𝑟 − 1

2
𝜎2)(𝑡 − 𝑇)]    (8) 

𝜏 = −
2

𝜎2
(𝑟 −

1

2
𝜎2) (𝑡 − 𝑇) (9) 

and with the function 𝑌(𝑆𝑡, 𝑡) expressed in the form  6 

𝑌(𝑆𝑡, 𝑡) = 𝑒𝑟(𝑡−𝑇)𝑦(𝑢, 𝜏) (10) 

finding the solution of (2) comes down to solving the following partial differential equation 7 

𝜕𝑦(𝑢,𝜏)

𝜕𝜏
=

𝜕2𝑦(𝑢,𝜏)

𝜕𝑢2
   (11) 

and whose initial conditions are dependent on the type of options: 8 

 for a put option  9 

𝑦(𝑢, 0) = {
𝐾 [𝑒𝑥𝑝 (

1
2

𝑢𝜎2

𝑟−1
2

𝜎2
) − 1] for 𝑢 ≥ 0

0 for 𝑢 < 0

  (12) 

 for a call option  10 

𝑦(𝑢, 0) = {
𝐾 [1 − 𝑒𝑥𝑝 (

1
2

𝑢𝜎2

𝑟−1
2

𝜎2
)] for 𝑢 ≤ 0

0 for 𝑢 > 0

  (13) 

It is worth noticing that equation (11) is of parabolic type and is usually interpreted as the 11 

heat conduction equation. 12 

4. Trefftz method  13 

Equation (11) describing the price of an option has been solved using various techniques 14 

(Sawangtong et al., 2018), e.g. the finite difference method or the finite element method,  15 

which represent purely numerical methods but also the Adomian decomposition method, 16 

homotopy perturbation method, radial basis function method, etc. 17 

The present approach employs the numerical-analytical Trefftz method. The logic of this 18 

method is to approximate the solution of a differential equation with a linear combination of 19 

certain basis functions (named T-complete functions or Trefftz functions) satisfying the given 20 
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differential equation. The origins of the method date back to the 1920s when a German 1 

mathematician E. Trefftz (1926) used it for solving the Laplace equation. Since then,  2 

a few versions of this method have appeared and been applied to various types of partial 3 

differential equations but the main concept remains unchanged. It might be worth to note that 4 

the method is normally applicable only to homogeneous linear differential equations since only 5 

for such equations we can generate T-complete functions. In order to employ the Trefftz method 6 

for solving nonlinear differential equations or nonhomogeneous linear equations, we have to 7 

combine it with some other methods, e.g. with the finite element method (Maciejewska, 2017), 8 

the Picard method (Grabowski et al., 2018) or the homotopy method (Hożejowska, 2015). 9 

However, we have to accept that the solution will not satisfy the governing equation exactly so 10 

it will be deprived of its advantage.  11 

For equation (11) describing the considered option pricing problem, the appropriate  12 

T-complete functions are the so-called heat polynomials. Introduced and investigated by  13 

P.C. Rosenbloom and D.V. Widder (1959), they are expressed with a formula  14 

𝑣𝑛(𝑢, 𝜏) = 𝑛! ∑
𝑢𝑛−2𝑘𝜏𝑘

(𝑛−2𝑘)!𝑘!

𝑛
𝑘=0    (14) 

where n is used to denote the n-th polynomial.  15 

According to logic of the Trefftz method, the solution of equation (11) has to be 16 

approximated with a linear combination of the heat polynomials which gives  17 

𝑦(𝑢, 𝜏) = ∑ 𝑎𝑛𝑣𝑛(𝑢, 𝜏)𝑁
𝑛=0   (15) 

where N denotes the number of the T-complete functions employed, excluding a constant 18 

function 𝑣0. 19 

Unknown coefficients an of the linear combination (15) will be specified to ensure best 20 

fulfilment of the imposed boundary conditions (12) or (13) and more precisely, to minimise the 21 

squared differences between the exact and computed values of the function y(u,τ).  22 

Hence an approximate solution of the Black-Scholes equation (2) obtained by the Trefftz 23 

method can be expressed by the following formula  24 

𝑌∗(𝑆𝑡, 𝑡) = 𝑒𝑟(𝑡−𝑇) ∑ 𝑎𝑛𝑣𝑛(𝑢, 𝜏)𝑁
𝑛=0   (16) 

in which an approximate value of a European call (or put) option 𝐶𝑡
∗ (or 𝑃𝑡

∗) comes from the 25 

solution of equation (11) with respective initial conditions 12 (or 13). Since we use the Trefftz 26 

method in both cases, then, consequently, the solutions 𝐶𝑡
∗ and 𝑃𝑡

∗ will satisfy the Black-Scholes 27 

equation exactly but the boundary conditions will be satisfied only in sense of least-squares. 28 

The Trefftz method enjoys little popularity among economists. Therefore, it seems 29 

reasonable to shortly outline its most characteristic features. In terms of merits, it: 30 

 delivers continuous solutions which fulfill the appropriate governing equation,  31 

 is robust to small uncertainties (or disturbances) of the input data,  32 

 can be applied both to direct and inverse problems, 33 
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 allows various types of imposed conditions, including overspecified or partly missing, 1 

 does not require time-consuming mesh generation (as e.g. in FEM),  2 

 does not lead to complex computations (only integration or differentiation of simple 3 

functions performed only along the domain boundary) and therefore does not require 4 

advanced software and hardware products, unless for problems with highly complicated 5 

geometry. 6 

In terms of disadvantages, the Trefftz method: 7 

 can be directly applicable only to homogeneous linear differential equations, 8 

 is prone to Runge’s phenomenon (oscillation of solution at the edges) which might occur 9 

at high order of approximations.  10 

5. Results of computation 11 

The numerical simulations below consider call and put options and are based on the data 12 

taken from (Cervera, 2019). The calculations assumed the strike price 𝐾 =  10, expiration date 13 

in 3 months (i.e. 𝑇 =  0.25), 3-month risk-free rate 𝑟 =  0.1, volatility 𝜎 =  0.4 and the 14 

various possible values of the underlying asset price 𝑆𝑡 from 0.1𝐾 =  1 to 2𝐾 =  20, (Cervera, 15 

2019). The calculations were performed for 10 T-complete functions. Figure 1 compares call 16 

option price 𝐶𝑡
∗ obtained by the Trefftz method (Figure 1a) with the corresponding price 𝐶𝑡 17 

(Figure 1b) provided by the Black-Scholes formula, both presented versus the price of the 18 

underlying asset St .  19 

Figure 2 presents a 3D graph of the call option price 𝐶𝑡
∗, obtained by the Trefftz method as 20 

a function of the price of the underlying St and time 𝑡. 21 

 22 

Figure 1. The call option price obtained by: a) the Trefftz method and b) the Black-Scholes formula as 23 
a function of the changing price of the underlying instrument and constant volatility σ = 0.4. 24 
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 1 

Figure 2. The value of the call option price 𝐶𝑡
∗ depending on the price of the underlying 𝑆𝑡 and time 𝑡. 2 

Similar calculations were performed for the put option price, Figure 3.  3 

 4 

Figure 3. The put option price obtained by: a) the Trefftz method and b) the Black-Scholes formula as 5 
a function of the changing price of the underlying instrument and constant volatility σ = 0.4. 6 

The impact of volatility 𝜎 on option prices has also been examined. The performed 7 

calculations for the following parameter values σ = 0.4; 0.3; 0.2; 0.1; 0.05 showed no significant 8 

differences for both types of options, regardless of the calculation method. 9 

Figure 4 shows the differences 𝐶𝑡
∗ −  𝐶𝑡 (Figure 4a) and 𝑃𝑡

∗ −  𝑃𝑡 (Figure 4b) concerning 10 

the call and put options respectively. The differences for some selected values of volatility σ 11 

are plotted as functions of the underlying asset price St. 12 

 13 

Figure 4. Price differences: a) for call option 𝐶𝑡
∗ −  𝐶𝑡, b) for put option 𝑃𝑡

∗ −  𝑃𝑡. 14 
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As follows from Fig. 4, the Trefftz method gave the results similar to those obtained from 1 

the Black-Scholes formula with a maximum difference of 0.99 for the put option and 1.07 for 2 

the call option.  3 

The obtained results indicate the following regularities found in the presented methods of 4 

option valuation (Trefftz vs. Black-Scholes). 5 

 The largest discrepancies between the results appear: at the ends of the price range of the 6 

underlying instrument (for call options) and at the beginning of the range (for put options), 7 

which might require complementing the model with some additional boundary 8 

conditions.  9 

 The observed discrepancies attain a local extremum in case the current underlying asset 10 

price 𝑆𝑡 equals the strike option price 𝐾. 11 

6. Conclusions  12 

Option pricing can be identified as an inverse problem where the unknown initial condition, 13 

namely – the option price at time 0 – has to be somehow determined. The paper presents the 14 

first approach to option pricing with the use of the Trefftz method. As demonstrated by the 15 

provided examples, the Trefftz method allows to obtain an approximate solution to the option 16 

pricing problem with satisfactory accuracy. Generally, it provides astonishingly similar results 17 

to those achieved by the Black-Scholes formula. More specifically, the differences have been 18 

very close to zero (~10-2 or less) on more than 82% of the analyzed price range of the underlying 19 

instrument 𝑆𝑡. The largest discrepancies between the results occurred for the highest volatility 20 

σ at the ends of the underlying instrument's price range (for call options) and at the beginning 21 

of the range (for put options). 22 

The authors would like to emphasize that the proposed approach provides promising results. 23 

Due to its special features, the Trefftz method might be competitive against the methods used 24 

so far in solving more complicated mathematical models referring to some other types of 25 

options.  26 

  27 
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