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Purpose: The article shows how to model audit errors using mixtures of probability 5 

distribution.  6 

Design/methodology/approach: In financial accounting, data about the economic activities of 7 

a given firm is collected and then summarized and reported in the form of financial statements. 8 

Auditing, on the other hand, is the independent verification of the fairness of these financial 9 

statements. An item in an audit sample produces two pieces of information: the book (recorded) 10 

amount and the audited (correct) amount. The difference between the two is called the error 11 

amount. The book amounts are treated as values of a random variable whose distribution is  12 

a mixture of the distributions of the correct amount and the true amount contaminated by error. 13 

The mixing coefficient is equal to the proportion of the items with non-zero errors amounts.  14 

Findings: The sum of normal and gamma distribution can be useful for modeling audit errors. 15 

Originality/value: In this paper, the method of moments is proposed to estimate mixtures of 16 

probability distribution, and we derive a formulation of the probability distribution of the sum 17 

of a normally distributed random variable and one with gamma distribution. This research could 18 

be useful in financial auditing. 19 

Keywords: mixture of probability, distribution, statistical auditing, sum of gamma and normal 20 

distribution, accounting error. 21 

Category of the paper: empirical, scientific research. 22 

Introduction  23 

In probability theory, an exponentially modified Gaussian (exGaussian) distribution 24 

describes the sum of independent normal and exponential random variables. An exGaussian 25 

random variable 𝑍 may be expressed as 𝑍 = 𝑋 + 𝑌, where 𝑋 and 𝑌 are independent,  26 

𝑋 is Gaussian with mean 𝜇 and variance 𝜎2 and 𝑌 is exponential of rate 𝛽. It has a characteristic 27 

positive skew from the exponential component. ExGaussian distribution is used as a theoretical 28 

model for the shape of chromatographic peaks (see Grushka, 1972), cellular biology (Golubev, 29 

2010) and microarray preprocessing (Silver, 2009). A Gaussian minus exponential distribution 30 
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has been suggested for modelling option prices (Carr, 2009). Greene (1990) derived  1 

a formulation of the probability distribution of the difference between a normally distribution 2 

random variable and one with gamma distribution. Wywiał (2016, 2018) described a model of 3 

two Poisson distributions and a mixture of gamma probability distributions respectively.  4 

The sum of normal and gamma distribution can be useful for modeling audit errors. 5 

Letting 𝑉𝑖 denote the book amount of the ith item in the account 𝑉 = ∑ 𝑉𝑖
𝑁
𝑖=1  called the 6 

population book amount, at regular periods, an auditor samples 𝑛 line items from the account 7 

and compares them against correct amounts. Therefore, let 𝑋𝑖 denote the audited amounts for 8 

the ith line item and let 𝜀𝑖 = 𝑉𝑖 − 𝑋𝑖 denote the error amount. The fundamental problem is the 9 

problem of constructing confidence limits for mean or totals in finite populations, when the 10 

underlying distribution is highly skewed and contains a substantial proportion of zero values. 11 

This situation is often encountered in statistical applications such as statistical auditing, 12 

reliability and insurance. The most distinctive feature of accounting data is the large proportion 13 

of line items without error, while an audit sample may not yield any nonzero error amounts. 14 

For analyses of such data, which most observations are zero, the classical interval estimation of 15 

the total error amount based on the asymptotic normality of the sampling distribution is not 16 

reliable. Johnson, Leitch and Neter (1981) observed that some of the accounts receivable have 17 

a 𝐽-shaped taint distribution with negative skewness. There are several distributions that also 18 

exhibit the same form of the distribution observed in accounting populations. These include the 19 

Gamma, Log-normal, Weibull, and Beta distributions. The error rates are usually very low, 20 

which render many existing statistical procedures inappropriate for estimating and hypothesis 21 

testing of error rates and error amounts.  22 

There are two main types of audit tests for which the acquisition of information can 23 

profitably make use of statistical sampling. The first audit test, collecting data to determine the 24 

rate of procedural errors of a population of transations is called a compliance test. The second, 25 

collecting data for evaluating the aggregate monetary error in the stated balance, is called  26 

a substantive test of details. Inference on the total error amount is usually based on confidence 27 

intervals. Of course, they are related to testing problems. The decision-making process in 28 

auditing is treated as a problem of testing statistical hypotheses about admissibility of the total 29 

or the mean accounting errors. This approach lets us control not only significance level (risk of 30 

incorrect rejection), but also probability of the type II error appearing (risk of incorrect 31 

acceptance). 32 

Substantive tests of details are concerned with the examination of the correctness of 33 

recorded monetary values in a financial statement. These tests provide direct evidence about 34 

the accuracy of total recorded monetary values. The auditor either applies substantive tests of 35 

detail extensively, or applies compliance tests to see if reliance on those controls are efficient 36 

and effective in reducing the tendency of material error in accounts. In compliance tests,  37 

the variable of interest is an error rate (proportion of transactions for which the internal control 38 

operates wrongly). Samples of transactions are used to make inferences about the error rate. 39 
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Many of the statistical methods adopted for quality control have been utilised in compliance 1 

testing. These methods are often referred to in the auditing context as attribute sampling 2 

(Robert, 1978). Based on the auditor’s understanding of the accounting and internal control 3 

system, the attributes that indicate performance of a control, as well as possible conditions of 4 

deviation, are identified, e.g. failure to obtain suitable authorization for a purchase order, which 5 

does not necessarily lead to a monetary loss. The auditor generally makes a preliminary 6 

assessment of the rate of error he/she expects to find in the population to be tested and the level 7 

of control risk. This assessment is based on the auditor’s prior knowledge or the examination 8 

of a small number of items from the population. The preliminary assessment is used by the 9 

auditor to design the audit sample and to determine the sample size. 10 

An account, such as accounts receivable or inventory, is a population of 𝑁 units known as 11 

line items. The dollar amounts that are recorded are called book amounts. Book value is the 12 

value recorded for accounts or financial statements. A sample is a selection of some,  13 

but not all, of the accounts. The information gathered from the sampled accounts is used to 14 

make inferences about the population. The only way to obtain the total value of the accounts is 15 

to audit all accounts, but this would be very costly. Not having to verify the information on all 16 

accounts to make these inferences reduces the cost in calculating the quantity of interest.  17 

A sampling approach is considered statistical if the selection of sampling items are random, 18 

each item having a calculated probability of being selected. Inferences about the population 19 

parameters may be made from the sample statistics. Random sampling enables the auditor to 20 

project sample results mathematically and to state, with measurable precision and confidence, 21 

the estimated rate of deviation in the population under audit (compliance audit sampling),  22 

or the estimated monetary misstatement in the population (substantive audit sampling).  23 

The most important benefit which statistical sampling offers is reduction of the risk of 24 

overauditing or underauditing. The auditor’s ultimate desire is to plan audits in a way that 25 

minimizes the total expected cost of performing the audit procedures while also giving a fair 26 

opinion on the financial statement. Sampling is therefore important in meeting these 27 

requirements. There are two audit procedures for which statistical sampling has been utilized. 28 

These are compliance and substantive tests. Statistical sampling in auditing seeks to assist 29 

auditors in using random selection methods and statistical evaluation techniques in testing, 30 

whether for compliance or substantive purposes. The objective is to reduce the risk of biased 31 

selection and quantify the sampling confidence level achieved.  32 

In simple random sampling (SRS), a sample of line items of the fixed size 𝑛 is drawn one 33 

by one with the same probability but without replacement. That is, each draw is carried out 34 

among items that have not already been chosen. There are thus 
𝑁!

(𝑁−𝑛)!
 samples each consisting 35 

of a combination of 𝑛 of the 𝑁 line items, and each such sample item has the probability 36 

(𝑁−𝑛)!

𝑁!
 of being selected. Robert (1978) gives a detailed account of the simple random sampling 37 

in auditing. 38 
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Stratified random sampling in auditing consists of dividing the auditing population into 1 

strata according to the sizes of the recorded amounts, and then selecting sampling items from 2 

each stratum independently by simple random sampling without replacement. Cyert, Hinckley, 3 

and Monteverde (1960) introduced the idea of achieving greater sampling efficiency through 4 

stratified sampling in auditing. A number of methods of stratifying audit populations effectively 5 

have been suggested, for example, by Arkin (1974) and Robert (1978). 6 

Probability proportional to size sampling (PPS) is sampling with unequal probabilities of 7 

selecting items. If items with larger values are relatively more important, then sampling with 8 

probability proportional to size will be useful. With PPS selection a sample of line items are 9 

taken in such a way that the inclusion probability, 𝜋𝑖 is proportional to 𝑣𝑖, that is 𝜋𝑖 =
𝑛𝑣𝑖

𝑉
 , 10 

provided that 𝑣𝑖 <
𝑣

𝑛
. This design implicitly stratifies the sample by recorded amount. PPS was 11 

originally developed in survey sampling theory by Hansen and Hurwitz (1943) for selection of 12 

clusters of unequal size. In the auditing context, this method and its variations are referred to as 13 

Monetary Unit Sampling (MUS), also known as Dollar Unit Sampling. The idea of using 14 

individual monetary values as the sampling units was suggested by Deming (1960).  15 

The basic concept of monetary unit sampling in auditing was developed independently, first by 16 

van Heerden (1961) and later by Stringer (1963). van Heerden suggested that an account 17 

balance or the line item could be regarded as a cluster of monetary units being either correct or 18 

in error. Monetary unit sampling was made popular by the work of Anderson and Teitlebaum 19 

(1973).  20 

Sum of gamma and normal distribution 21 

Let 𝑿 and 𝒀 be two continuous random variables with density functions 𝒇(𝒙) and 𝒈(𝒚), 22 

respectively. Assume that both 𝒇(𝒙) and 𝒈(𝒚) are defined for all real numbers. Then the 23 

convolution 𝒇 ∗ 𝒈 of 𝒇 and 𝒈 is the function given by:  24 

(𝒇 ∗ 𝒈)(𝒛) = ∫
∞

−∞
𝒇(𝒛 − 𝒚)𝒈(𝒚)𝒅𝒚 = ∫

∞

−∞
𝒈(𝒛 − 𝒙)𝒈(𝒙)𝒅𝒙 (1) 25 

Let 𝑿 and 𝒀 be two independent random variables with density functions 𝒇𝑿(𝒙) and 𝒇𝒀(𝒚) 26 

defined for all 𝒙. Then the sum 𝒁 = 𝑿 + 𝒀 is a random variable with density function 𝒇𝒁(𝒛), 27 

where 𝒇𝒁 is the convolution of 𝒇𝑿 and 𝒇𝒀. Suppose 𝑿 and 𝒀 are two independent random 28 

variables. Let 𝑿 be a random variable with gamma density:  29 

𝒇𝑿(𝒙) =
𝜷𝜶

𝚪(𝜶)
𝒙𝜶−𝟏𝒆−𝜷𝒙 𝒇𝒐𝒓 𝒙 > 𝟎 (2) 30 

  31 
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Let 𝒀 be a random variable with normal density:  1 

𝒇𝒀(𝒚) =
𝒆
−
(𝒚−𝝁)𝟐

𝟐𝝈𝟐

√𝟐𝝅𝝈
 (3) 2 

The density function for the sum 𝒁 = 𝑿+ 𝒀 is given by  3 

𝒇𝒁(𝒛) =
𝜷𝜶 ∫

∞

𝟎
𝒙𝜶−𝟏𝒆

(−𝜷𝒙)−
(−𝝁−𝒙+𝒛)𝟐

𝟐𝝈𝟐  𝒅𝒙

√𝟐𝝅𝝈𝚪(𝜶)
 (4) 4 

Plancade (2012) introduced gamma-normal convolution to model the background 5 

correction of Illumina BeadArrays. We use Wolfram Mathematica to calculate the integral, and 6 

we give here only the result:  7 

𝒇𝒁(𝒛) =
𝟐
𝜶−𝟑
𝟐
−
𝟏
𝟐𝜷𝜶(

𝟏

𝝈𝟐
)

𝟏
𝟐
−
𝜶
𝟐𝒆
−
(𝒛−𝝁)𝟐

𝟐𝝈𝟐

√𝝅𝝈𝚪(𝜶)

(

 
 
√𝟐𝚪(

𝜶

𝟐
) 𝟏𝑭𝟏(

𝜶

𝟐
;
𝟏

𝟐
;
(𝜷𝝈𝟐−𝒛+𝝁)

𝟐

𝟐𝝈𝟐
)

√
𝟏

𝝈𝟐

+

𝟐𝚪 (
𝜶+𝟏

𝟐
) (−𝜷𝝈𝟐 − 𝝁 + 𝒛) 𝟏𝑭𝟏 (

𝜶+𝟏

𝟐
;
𝟑

𝟐
;
(𝜷𝝈𝟐−𝒛+𝝁)

𝟐

𝟐𝝈𝟐
))

 (5) 8 

where  𝟏𝑭𝟏-is Kummer’s confluent hypergeometric function. 9 

 10 

Figure 1. The density function for the sum of gamma and standard normal. 11 

  12 
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Sum of exponential and normal distribution 1 

Let 𝑋 be a random variable with exponential density with parameter 𝛽 and 𝑌 be a variables 2 

with normal density. The density function for the sum 𝑍 = 𝑋 + 𝑌 is given by:  3 

𝑓𝑍(𝑥) =
1

2
𝛽𝑒

1

2
𝛽(𝛽𝜎2+2𝜇−2𝑥)erfc (

𝛽𝜎2+𝜇−𝑥

√2𝜎
)  (6) 4 

where 𝑒𝑟𝑓(𝑥) = 1 − 𝑒𝑟𝑓𝑐(𝑥) =
2∫

𝑥

0
𝑒−𝑡

2
 𝑑𝑡

√𝜋
 5 

 6 

Figure 2. The density function for the sum of exponential(1) and standard normal. 7 

The CDF function for the sum 𝑍 = 𝑋 + 𝑌 is given by:  8 

𝐹𝑍(𝑡) =
1

2
(erf (

𝑡−𝜇

√2𝜎
) − 𝑒

1

2
𝛽(𝛽𝜎2+2𝜇−2𝑡)erfc (

𝛽𝜎2+𝜇−𝑡

√2𝜎
) + 1) (7) 9 

Mixture of gamma and sum of gamma and normal probability 10 

Wywiał (2018) proposed the following model based on mixtures of distributions.  11 

The pharse "mixture of distributions" usually refers to a situation in which the 𝑖th of  12 

𝑘 underlying distributions is chosen with probability 𝑝𝑖 , 𝑖 = 1,… , 𝑘. The selection probabilities 13 

are usually unknown and the number of underlying distributions 𝑘 may be fixed or a random. 14 

In general, the word ‘mixture’ refers to a convex combination of distributions or random 15 

variables. The following mixtures of probability distributions seem to be useful: mixtures of 16 

gamma distributions, Pareto, lognormal or mixtures of Pearson's type distributions with positive 17 

skewness. From another point of view, the types of distributions of true accounting amounts 18 

and accounting amounts contaminated with errors do not have be the same. The probability 19 

density of the observed accounting amounts is a mixture of density 𝑓0(𝑥) of the true amounts 20 

and density 𝑓1(𝑥) of the amounts contaminated by errors.  21 
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𝑓(𝑥) = (1 − 𝑝)𝑓0(𝑥) + 𝑝𝑓1(𝑥)  (8) 1 

Let 𝑋 ∼ 𝐺(𝛼, 𝛽) and 𝑌 ∼ 𝑁(𝜇, 𝜎) be independent and 𝑍 = 𝑋 + 𝑌.  2 

𝑓(𝑥|𝛼, 𝛽, 𝜇, 𝜎) =  (1 − 𝑝)𝑓0(𝑥|𝛼, 𝛽) +  𝑝𝑓1(𝑥|𝛼, 𝛽, 𝜇, 𝜎) (9) 3 

where 𝑓1(𝑥|𝛼, 𝛽, 𝜇, 𝜎) is the density of the variable 𝑍 and  4 

𝑓0(𝑥|𝛼, 𝛽) =
𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥𝑥 > 0  (10) 5 

Let 𝑋 and 𝑌 be independent where 𝑌 is the accounting error. Hence 𝑍 = 𝑋 + 𝑌,  6 

𝑉 = (1 −𝑊)𝑋 +𝑊𝑍, where 𝑊 = 1 when an accounting error occurs 𝑃(𝑊 = 1) = 𝑝 and 7 

𝑊 = 0 when it does not occur 𝑃(𝑊 = 0) = 1 − 𝑝. The basic moments of the random variable 8 

𝑉 are:  9 

𝐸(𝑉) =  (1 − 𝑝)𝐸(𝑉|𝑊 = 0) +  𝑝𝐸(𝑉|𝑍 = 0) = (1 − 𝑝)𝐸(𝑋) + 𝑝𝐸(𝑍) (11) 10 

𝐶2(𝑉) = 𝑝(1 − 𝑝)(𝐸(𝑍) − 𝐸(𝑋))
2 + 𝑝𝐶2(𝑍) + (1 − 𝑝)𝐶2(𝑋) (12) 11 

𝐶3(𝑉) = 𝑝(1 − 𝑝)(1 − 2𝑝)(𝐸(𝑍) − 𝐸(𝑋))
3 − 3𝑝(1 − 𝑝)(𝐸(𝑍) − 𝐸(𝑋)))𝐶2(𝑋) +

3𝑝(1 − 𝑝)(𝐸(𝑍) − 𝐸(𝑋)))𝐶2(𝑍) + 𝑝𝐶3(𝑍) + (1 − 𝑝)𝐶3(𝑋)
 (13) 12 

𝐶4(𝑉) = 𝑝(1 − 𝑝)(3𝑝
2 − 3𝑝 + 1)(𝐸(𝑍) − 𝐸(𝑋)) + 6𝑝(1 − 𝑝)2(𝐸(𝑍) − 𝐸(𝑋))2𝐶2(𝑍) +

+6𝑝2(1 − 𝑝)𝐶2(𝑋) − 4𝑝(1 − 𝑝)(𝐸(𝑍) − 𝐸(𝑋))𝐶3(𝑍) +

4𝑝(1 − 𝑝)(𝐸(𝑍) − 𝐸(𝑋))𝐶3(𝑋) + 𝑝𝐶4(𝑍) + (1 − 𝑝)𝐶4(𝑋)

(14) 13 

where 𝐶𝑟(𝑉) = 𝐸(𝑉 − 𝐸(𝑉))
𝑟. Based on expressions (11)-(12), we obtain: 14 

𝐸(𝑉) =
𝛼

𝛽
+ 𝑝𝜇 𝐶2(𝑉) = 𝑝(1 − 𝑝)𝜇

2 + 𝑝𝜎2 +
𝛼

𝛽2
  (15) 15 

We can estimate parameters of the distribution mixture by means of the method of moments. 16 

Let 𝜏 = 𝐸(𝑉̅ − 𝑋̅) be the expected mean accounting error. Audit purpose is inference  17 

on 𝜏 or pn the expected total accounting 𝑁𝜏. In particular, when we assume that 𝜏0 is the 18 

admissible mean accounting error, then the inference reduces to testing the following 19 

hypothesis: 20 

𝐻0: 𝜏 ≤ 𝜏0  𝐻1: 𝜏 > 𝜏0    (16) 21 

The basic idea of any sort of hypothesis test is to compare the observed value of a test 22 

statistic, say 𝜏̂, with the distribution that it would follow if the null hypothesis were true.  23 

The null is then rejected if 𝜏̂ is sufficiently extreme relative to this distribution. In most cases 24 

of interest to econometricians, however, the distribution of the test statistic we use is not known. 25 

We therefore have to compare 𝜏̂ with a distribution that is only approximately correct.  26 

In consequence, the test may overreject or underreject. 27 

  28 
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Inference based of sample moments 1 

We assume that 𝜇 = 0. In this situation, expressions (11)-(15) lead to following results:  2 

(

 
 
 
 

𝐸(𝑉) =
𝛼

𝛽

𝑉(𝑉) =
𝛼+𝛽2𝑝𝜎2

𝛽2

𝐶3(𝑉) =
2𝛼

𝛽3

𝐶4(𝑉) =
3(𝛼2+𝑝𝛽4𝜎4+2𝛼(1+𝑝𝛽2𝜎2))

𝛽4

  (17) 3 

The solution of this system provides estimators of parameters 𝛼, 𝛽, 𝜎2 and 𝑝.  4 

(

 
 
 
 
 
 
 
 
 
 
 

𝛼 =
√2(𝐸(𝑉))3/2

√𝐶3(𝑉)

𝛽 =
√2√𝐸(𝑉)

√𝐶3(𝑉)

𝜎2 =
6(𝐸(𝑉))3/2𝐶2(𝑉)𝐶3(𝑉)−3√2(𝐸(𝑉))

2(𝐶3(𝑉))
3/2+2√2𝐸(𝑉)√𝐶3(𝑉)(6(𝐶2(𝑉))

2−𝐶4(𝑉))+

6√𝐸(𝑉)(𝐸(𝑉)𝐶3(𝑉)−2(𝐶2(𝑉))
2)

√𝐸(𝑉)(6(𝐶3(𝑉))
2−4𝐶2(𝑉)𝐶4(𝑉))+6√2𝐶2(𝑉)(𝐶3(𝑉))

3/2

6√𝐸(𝑉)(𝐸(𝑉)𝐶3(𝑉)−2(𝐶2(𝑉))
2)

𝑝 =
3(√2(𝐸(𝑉))3/2√𝐶3(𝑉)(12(𝐶2(𝑉))

3−4𝐶2(𝑉)𝐶4(𝑉)+3(𝐶4(𝑉))
2)+3(𝐸(𝑉))3𝐶3(𝑉)

2)+

𝐷
3(2(𝐸(𝑉))2𝐶3(𝑉)(𝐶4(𝑉)−9(𝐶2(𝑉))

2)))+

𝐷

3(6√2√𝐸(𝑉)(𝐶2(𝑉))
2(𝐶3(𝑉))

3/2+4𝐸(𝑉)𝐶2(𝑉)(𝐶2(𝑉)𝐶4(𝑉)−3𝐶3(𝑉)
2)))

𝐷

 (18) 5 

where 𝐷 = 9(𝐸(𝑉))3(𝐶3(𝑉))
2 + 12(𝐸(𝑉))2𝐶3(𝑉)(𝐶4(𝑉) − 6(𝐶2(𝑉))

2) +6 

𝐸(𝑉)(4(𝐶4(𝑉))
2 − 72𝐶2(𝑉)(𝐶3(𝑉))

2) − 18(𝐶3(𝑉))
3 and 𝐷 ≠ 0. 7 

More details about inference on mixtures of probability distributions can be found in the 8 

book by McLachlan and Peel (2000), where, e.g., the well-known EM algorithm is used to 9 

evaluate the maximum likelihood estimators. 10 

  11 
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Conclusion 1 

In this paper it was shown how to estimate parameters of distribution mixtures by means of 2 

the method of moments when the expected value of normal distribution is 0. In the general case, 3 

estimators of the maximum likelihood method and the method of moments are usually the 4 

solutions of the systems of non-linear equations. In order to calculate those solutions, some 5 

numerical methods have to be used. 6 
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