SILESIAN UNIVERSITY OF TECHNOLOGY PUBLISHING HOUSE

SCIENTIFIC PAPERS OF THE SILESIAN UNIVERSITY OF TECHNOLOGY ORGANISATION AND MANAGEMENT SERIES NO. 134

2019

STEEL INDUSTRY 4.0 IN THE PERSPECTIVE OF FORECASTED QUANTITIES OF STEEL PRODUCTION IN THE WORLD

Bożena GAJDZIK

Silesian University of Technology, Gliwice; bozena.gajdzik@polsl.pl, ORCID: 0000-0002-0408-1691

Abstract: The development of new production systems during the fourth industrial revolution is called Industry 4.0. Production in industry 4.0 is carried out by industrial robots with intelligence computers using the Internet to control and communicate devices and man with devices and to integrate all processes inside and outside the enterprise within the supply chain using all possible technical solutions to connect the virtual world and the real world. Particular branches of industry in the world invest in new technology. New technology is implemented in the metallurgical industry, too. Managers in enterprises in the steel industry want to know how trends in steel production will be in the future. The key aim of this publication is to present forecasts of steel production quantities in the world until 2022.

Keywords: Industry 4.0, world steel production, forecasts of steel production.

1. Introduction

The steel industry is a very complex sector, with which the global economy as a whole is inextricably linked. Steel products are needed in many industries, such as in the automotive, construction and other industries. The steel industry consists of several large companies operating globally and with a significant share of production, as well as many small businesses operating on a lesser scale. The largest steel producers are consolidated into large international corporations (e.g. ArcelorMittal, created in 2006 as a result of the merger of Arcelor and Mittal Steel) (Gajdzik, and Sroka, 2012). The steel industry is subject to constant changes under the influence of market trends. Economic transformations in the post-socialist countries of Central and Eastern Europe significantly accelerated the changes introduced in the steel sector in such countries as: Poland, Romania, Slovakia, Croatia and others (Gajdzik, 2013). The rapidity of changes introduced in the steel industry in the second half of the last century was called restructuring, and its aim was to obtain and increase the competitiveness of the sector. Assuming that the steel industry restructuring processes in individual regions of the world

concluded with the end of the last century, the steel industry in the XXI century has entered new possibilities of development, despite the fact that steel production is highly material and energy-consuming, and the raw materials needed to manufacture steel products are unevenly geographically distributed. The steelmaking technologies used in the industry have not fundamentally changed over the past few decades. The key converter technologies are the converter process (BOF – *Basic Oxygen Furnace*) and electric process (EAF – *Electric Arc Furnace*). The applied technologies are subject to innovation in order to adapt them especially to environmental protection requirements, as well as to increase productivity (Little, 1989). Steel enterprises (steel mills) invest in unconventional technologies that enable steel production without emissions (Birat, 2002; Garbarz, 2008). In addition to technological investments, according to industry reports (Deloitte, 2018, p. 22), innovation is more than half of innovation. The second decade of the XXI century has created a challenge for the steel sector in the context of new driving forces of the industrial revolution, such as IT and Internet infrastructure (IoT – Internet of Things), and its basic element is data (Big Data).

The aim of this publication is to present an overview of the capabilities of the steel industry in pursuit of industry 4.0, with an emphasis on the forecasted volume of steel production in the world until 2022. These forecasts are the result of own work and will form the basis for further long-term and medium-term analyses of the development of the steel industry. The work consists of two parts:

Section 1: Describes how steel enterprises adjust to industry 4.0.

Section 2: Sshows the main trends in steel production forecasts in the world.

The work ends with a conclusion of the final application based on the direction of forecast trends.

2. Steel enterprises in the perspective of industry 4.0

The fourth industrial revolution is focused on information and data processing (Big Data, Data Analysis). Industry 4.0 is the integration of cyber-physical systems in various objects and spatial systems, including in the field of cyber-physical production systems of various industries (CPPS – cyber-physical production systems) (Lasi, and Fettke, Feld, Hoffmann, 2014; Kunal Suri et al., 2017) as part of a coopetition network (Cygler, Gajdzik, and Sroka, 2014). New cooperation systems integrate people with digitally controlled machines that widely use the Internet and information technologies. Information in the XXI century is to be used at any time and from any place.

The new possibilities brought by the industry 4.0 translate into increased productivity and higher production economy, as well as an increase of individualised products produced in short production series. The implementation of changes in production enterprises is carried out at

strategic and operational levels. Initiating changes falls within the domain of top management. The decision to proceed with changes requires modification of a company's mission and vision of development. In enterprises at industry level 4.0 (at the beginning of their evolution), new management positions are created (e.g. industry director 4.0, main CPPS technology, data analysis director), along with new teams (e.g. data analysis team, preventive maintenance team (UR)). The existing organisational structures are subject to radical, and over time, the mapping of work organisation in the form of real organisational structures will not be necessary. The existing structure will be lined with a network of virtual circuits a "smart" or "clever", "cute", "elastic". Enterprises, by adapting the organisation of production to industryspecific 4.0 solutions, usually first select a certain part of production (important for the implementation of business) and adapt it to the requirements of the cyber-physical system (this solution is referred to as an island of cyber-physical production). The basis for industry 4.0 is the achievement by enterprises of significant or full automation of production and robotisation activities. Investments in advanced technologies are a long-term activity, which means that after the completion of some investments, further ones are implemented (Report, PWC, 2018).

Industry 4.0 is a challenge for individual industries and sectors of the economy. In the steel industry, the digitisation of business functions (digitisation) and technological processes and marketing, as well as administrative and management innovations, intensified at the end of the previous century, which determine the competitiveness of individual enterprises. Based on industry reports (Deloitte, 2017, p. 22), the following structure of innovation in the steel industry can be adopted: more than 50% are process innovations, approx. 30% are product innovations, and about 10% are marketing and administrative innovations. Important areas of innovation include: staff development, advanced manufacturing technology, research and development (R & D), digitisation of business functions, marketing research and analysis, licenses, patents. The areas of advanced manufacturing technology in the steel industry are: energy-saving production technologies, alternative energy sources, electronic document management, full automation of processes, advanced computer production support systems: ERP, CRM, SAP and others, Big Data, computer integration of processes, Internet of Things, cyber-physical systems and technological lines. The largest investments in recent years in the steel sector have been made in: Electronic Documents Management (EDM), advanced computer systems (supporting manufacturing processes), e.g. ERP and technologies that reduce energy consumption while diversifying it. The steel sector invests in advanced manufacturing technologies. However, the implementation of changes in the timing of individual regions of the world can be shifted by up to two decades. It is conventionally assumed that the development of cyber-physical production systems will take place in 2020-2030. The implementation of innovations at the 4.0 industry level by steel enterprises is conditioned by their financial capabilities and the current level of automation of manufacturing processes, as well as the degree of electronic (computer) handling of individual functions. It is much easier to implement innovations in large metallurgical enterprises belonging to international capital groups than it is to smaller enterprises (a result of the experience curve, financial capital, market share, etc.). Based on the research published by industry and consulting organisations on the adaptation of changes in the steel sector at the level of industry 4.0, it can be concluded that this process has been initiated, especially in regions where steel thought has a strong competitive position. Although steel production technologies have not changed for many years, the steel industry has carried out significant work to optimise production at various stages of business development, and above all, it strives to improve energy efficiency (energy intensity has been reduced by approx. half over the last 40 years) and to reduce the emissions of production pollutants. Examples of investments in the steel sector are: 3D printers used in steelworks, e.g. in the Severstal Group for the production of casting models (Cherepovets steel plant) (Deloitte, 2018), robotic storage and service centres (Thyssen EnergoStal), steel products with high added value, e.g. personalised steel structures and others obtained as part of the improved metalworking technology. The model of building personalised steel products is based on large (key) customers, which include: construction companies, fuel and energy recipients, transport companies, machine building industry. The SME segment, which also acquires metal products, is a secondary area. In the steel industry, there are currently several regional research initiatives around the world, such as the AISI Technology Roadmap programme in the US (http://steeltrp.com/), the Ultra-Low Carbon Steel Dioxide (ULCOS) project in Europe (http://www.ulcos.org), POSCO CO 2 Breakthrough Framework in Korea (http://www.posco.com/) and the COURSE50 programme in Japan (http://www.jisf.or.jp/).

3. Forecasts of steel production in the world

Investments in new technologies depend on the demand for steel products. In the perspective of the next few years, a 0.5% annual growth in steel production in the world is expected, with an increase in global consumption by 1.3% (Deloitte, 2018). Global steel production has been growing since the 1970s, from 595 million tonnes (Mt) in 1970 to 1,690 million tonnes (Mt) in 2017 (Worldsteel 2010, 2017, 2018). Geographically, steel production is concentrated in Asia (over 65% of world production volume). Since 2004, global steel production has exceeded 1,000 million tonnes (Mt) of steel produced during the year. Figure 1 shows steel production in the world in the years 2000-2017.

Figure 1. Steel production in the world in 2000-2017 (reports: Worldsteel 2010, Worldsteel 2017, Worldsteel 2018).

The annual volume of steel production in the world (in millions of tonnes) for the period 2000-2017 was used to determine forecasts for the period 2018-2022. The methodology of forecasting consisted in applying both classic methods of forecasting extrapolation of linear and nonlinear trends of the studied phenomenon, as well as adaptive methods, advanced exponential-autoregressive models and forecasting by the creeping trend method using harmonic weights. In particular adaptive methods, the following methods were used: the naïve method in the additive and multiplicative approach, the method of the moving average straight line for the time series shaped around the average value (constant) for various starting points (k), the weighted moving average method for the time series around the average value (constant) for different starting points (k) and different weights (w_i) , the moving average straight method for the time series around the development trend for different starting points (k), methods the weighted average moving around the development trend for different starting points (k) and different weights (w_i) , the simple exponential smoother smoothing model for different starting points in the α optimisation due to the value of forecast errors: Ψ and RMSE, a single exponential smoothing model for various start points in the α optimisation due to the value of forecast errors: Ψ and RMSE (formulas 1-2), the exponential-autoregressive model (for different: k and l and different values: β i δ) while optimising α due to the value of forecast errors: Ψ and RMSE, the Holt linear model with the additive and multiplicative trend (for different starting mechanisms $S_1 = 0$, $S_1 = y_2 - y_1$, $S_1 = y_2 / y_1$, $S_1 = 1$) due to the minimum value Ψ and RMSE, the Holt linear model with the extinction effect of the additive or multiplicative trend for different boot mechanisms and due to the minimum value of forecast errors, Brown's double exponential smoothing model for the linear model, the triple exponential smoothing model for the square model. The results of forecasting using the aforementioned models are summarised in Table 1.

Used formulas:

$$RMSE = \sqrt{\frac{1}{n-m} \sum_{t=m+1}^{n} (y_t - y_t^*)^2}$$
(1)

$$\Psi = \frac{1}{n-m} \sum_{t=m+1}^{n} \frac{|y_t - y_t|}{y_t}$$
(2)

In formulas 1 & 2, y_t is an empirical value, i.e. realisation of variable y in a t period of time $(t \in \overline{1, T})$; y_t^* is the forecast value; n is the number of elements of the time series; m is the number of initial time moments t, for which an expired forecast has not been carried out or is being treated as a part of necessary start-up mechanism.

The optimisation of the point forecast value was based on the search for the minimum value of one of the above-mentioned errors, treated as the optimisation criterion.

Table 1.

Forecasts of steel production in the world until 2022

			total	Forec	ast error	Additional
No	Prognostic method/model			ех	c post	information about models
			Mt		RMSE	
1.	Additive naïve method (forecast for 2	.018)	1,690.479	0.0558	87.482	-
		1				
2.	Multiplicative naïve method with	2018	1,756.430	0.0550	106.746	
	increasing tendency	2019	1,824.955			
		2020	1,896.152			
		2021	1,970.128			
		2022	2,046.128			
3.	Simple moving average for time	2018	1,658.742	0.0762	112.358	k = 2
	series with constant (average)	2019	1,674.610			
	<i>k</i> -point value $k = 2$	2020	1,666.676			
		2021	1,670.643			
		2022	1,668.659			
4.	Simple moving average for time	2018	1,638.470	0.0905	134.326	<i>k</i> = 3
	series with constant (average)	2019	1,651.984			
	<i>k</i> -point value $k = 3$	2020	1,660.311			
		2021	1,654.183			
		2022	1,666.120			
5a.	Weighted moving average for time	2018	1,665.089	0.0721	106.820	<i>k</i> = 2
	series with constant k-point value	2019	1,675.245			$w_l = 0.40$
	$(k=2)$ and weights w_i ($w_l = 0.40$	2020	1,671.183			$w_2 = 0.60$
	and $w_2 = 0.60$)	2021	1,672.808			
		2022	1,672.158			
5b.	Weighted moving average for time	2018	1,671.437	0.0683	101.756	<i>k</i> = 2
	series with constant k-point value	2019	1,677.149			$w_1 = 0.30$
	$(k = 2)$ and weights w_i ($w_l = 0.30$	2020	1,675.435			$w_2 = 0.70$
	and $w_2 = 0.70$)	2021	1,675.950			
		2022	1,675.795			
6.	Weighted moving average for time	2018	1,662.181	0.0747	110.947	<i>k</i> = 3
	series with constant k-point value	2019	1,667.153			$w_l = 0.10$
	$(k=3)$ and weights w_i ($w_l = 0.10$;	2020	1,667.994			$w_2 = 0.30$
	$w_2 = 0.30$ and $w_3 = 0.60$)	2021	1,667.160			$w_3 = 0.60$
		2022	1,667.410			

Cont.	table	1.

Cont.						
7.	Simple moving average for	2018	1,736.756	0.0548	104.878	<i>k</i> = 2
	increasing time series with k-point	2019	1,791.631			
	k = 2	2020	1,842.207			
		2021	1,894.933			
		2022	1,946.584			
8.	Simple moving average for	2018	1,698.254	0.0510	94.109	<i>k</i> = 3
	increasing time series with <i>k</i> -point	2019	1,731.697			
	k = 3	2020	1.766.594			
		2021	1 791 966			
		2022	1 823 203			
9a	Simple moving average with	2018	1 717 094	0.0495	96 161	k = 3
<i>J</i> u.	weights $(w_1 = 0.20; w_2 = 0.30 \text{ and}$	2019	1 755 260	0.0175	90.101	$w_{i} = 0.20$
	$w_2 = 0.50$ for increasing time series	2019	1,795,023			$w_1 = 0.30$
	with k point $k = 3$	2020	1,795.025			$w_2 = 0.50$
	with k-point $k = 5$	2021	1,851.077			<i>W</i> ₃ = 0.50
01		2022	1,809.303	0.0505	100 227	L = 2
90.	Simple moving average with 0.20 and 0.20 and	2018	1,730.303	0.0505	100.327	k = 3
	weights $(w_1 = 0.10; w_2 = 0.30 \text{ and})$	2019	1,//0.240			$W_I = 0.10$
	$w_3 = 0.60$) for increasing time series	2020	1,822.088			$w_2 = 0.30$
	with k-point $k = 3$	2021	1,867.347			$w_3 = 0.60$
		2022	1,912.843			
10a.	Simple exponential smoothing	2018	1,689.835	0.0529	85.288	Ψ for $\alpha_{opt} = 0.9899$
	(Brown's model) for start point:	2019	1,689.835			
	$y^*_{t=1} = y_1$ and α opt. for Ψ	2020	1,689.835			
		2021	1,689.835			
		2022	1,689.835			
10b.	Simple exponential smoothing	2018	1,687.800	0.0537	86.187	RMSE for $\alpha_{opt} =$
	(Brown's model) for start point:	2019	1,687.800			0.9585
	$v_{t=1}^* = v_t$ and α opt. for RMSE	2020	1,687.800			
		2021	1.687.800			
		2022	1.687.800			
11a	Simple exponential smoothing	2018	1 690 466	0.0603	89 285	Ψ for α and $= 0.9998$
	(Brown's model) for start point.	2019	1 690 466	0.0002	07.200	
	$v_{r+1}^* = averange(v_1, v_2)$ and α ont	2020	1 690 466			
	for Ψ	2020	1,690,466			
		2021	1,090.400			
11h	Simple exponential smoothing	2022	1,000.400	0.0603	80.283	DMSE for α –
110.	(Brown's model) for start point:	2010	1,090.473	0.0005	09.205	0.0000
		2019	1,090.473			0.9999
	$y^*_{t=1}$ = averange (y ₁ .y ₆) and α opt.	2020	1,090.473			
	IOF KMSE	2021	1,090.473			
10		2022	1,690.473	0.0400	00 (10	
12a.	Single exponential smoothing	2018	1,/2/.833	0.0498	89.610	Ψ for $\alpha_{opt} = 0.7789$
	(Brown's model) for: α opt. for Ψ	2019	1,756.928			
		2020	1,779.589			
		2021	1,797.239			
		2022	1,810.987			
12b.	Single exponential smoothing	2018	1,707.836	0.0531	85.354	RMSE for $\alpha_{opt} =$
	(Brown's model) for: α opt. for	2019	1,718.729			0.2716
	RMSE	2020	1,725.565			
		2021	1,729.855			
		2022	1,732.547			
13 _{a1.}	Exponential autoregressive model	2018	1,702.327	0.0607	102.857	k = 3 and $l = 2$ with
	for: $k = 3$ and $l = 2$, and with α opt.	2019	1,737.649			$\beta_1 = 0.7 \ \beta_2 = 0.2$
	for Ψ	2020	1,737.980			$\beta_3 = 0.1 \ \delta_1 = 0.2$
		2021	1,770.564			$\delta_2 = 0.8$
		2022	1.775.161			Ψ for $a_{mi} = 0.7912$
1			,	1		- 101 0 opt 0.1912

Cont	table	1
Com.	luoie	

Com.						
13 _{a2.}	Exponential autoregressive model	2018	1,689.463	0.0616	99.585	k = 3 and $l = 2$, and
	for: $k = 3$ and $l = 2$, and with α opt.	2019	1,707.054			with $\beta_1 = 0.7 \ \beta_2 = 0.2$
	for RMSE	2020	1,688.045			$\beta_3 = 0.1 \ \delta_1 = 0.2$
		2021	1,707.281			$\delta_2 = 0.8$ RMSE for α_{opt}
		2022	1,698.021			= 0.6944
13 _{b1}	Exponential autoregressive model	2018	1,732.610	0.0493	94.304	$\beta_1 = 0.7 \ \beta_2 = 0.2$
	for different β or δ (according to	2019	1,804.755			$\beta_3 = 0.1 \ \delta_1 = 0.8$
	model 13a) and with α ont for Ψ	2020	1.885.117			$\delta_2 = 0.2$
	niouor rou), una vitaro opt. for r	2021	2 005 275			Ψ for $q_{m} = 0.8812$
		2022	2 156 854			1 101 0. <i>opt</i> 0.0012
13h2	Exponential autoregressive model	2018	1 710 050	0.0517	87 435	$\beta_1 = 0.7 \beta_2 = 0.2$
10 02.	for different β or δ (according to	2019	1 735 307	0.0017	0,1.00	$\beta_1 = 0.1 \ \delta_1 = 0.8$
	model 13a) and with α opt for	2020	1 749 405			$\delta_2 = 0.2$
	RMSF	2020	1 781 783			RMSE for q =
	RIVISE	2021	1 809 211			0.6944
14.1	Exponential autoregressive model	2012	1,009.211	0.0494	94 167	k=2 and $l=2$ and
1 Tal.	for: $k = 2$ and $l = 2$ and with α ont	2010	1 758 892	0.0474	94.107	with $\beta_1 = 0.7 \beta_2 = 0.3$
	for W	2017	1,730.072			$\delta_1 = 0.8 \delta_2 = 0.2$
	101 1	2020	1,702.000			$\frac{0}{1000} = \frac{0000}{000} = 0.0000000000000000000000000000000$
		2021	1,800.500			$4 101 \alpha_{opt} - 0.8839$
14	Exponential autorograggive model	2022	1,827.013	0.0528	06 072	k-2 and $l-2$ and
14 _{a2.}	Exponential autoregressive model for $k=2$ and $l=2$ and with α and	2010	1,/0/.110	0.0328	80.825	k = 2 and $l = 2$, and with $\theta = 0.7, \theta = 0.2$
	for $k = 2$ and $i = 2$, and with α opt.	2019	1,097.032			with $p_1 = 0.7 p_2 = 0.3$
	IOF RMSE	2020	1,691.535			$o_1 = 0.8 \ o_2 = 0.2$
		2021	1,693.322			RMSE for $\alpha_{opt} =$
1.4		2022	1,694.511	0.0(1(00 7 40	0.6903
14 _{b1.}	Exponential autoregressive model	2018	1,701.872	0.0616	99.749	k = 2 and $l = 2$, and
	for: $k = 2$ and $l = 2$, and with α opt.	2019	1,725.536			with $\beta_1 = 0.3 \beta_2 = 0.7$
	for Ψ and for different β or δ	2020	1,718.794			$\delta_1 = 0.2 \ \delta_2 = 0.8$
	(according to model 14a)	2021	1,729.058			Ψ for $\alpha_{opt} = 0.7839$
1.4		2022	1,733.333	0.0(04	00.050	
14 _{b.2.}	Exponential autoregressive model	2018	1,694.918	0.0624	98.359	k = 2 and $l = 2$, and
	for: $k = 2$ and $l = 2$, and with α opt.	2019	1,708.717			with $\beta_1 = 0.3 \beta_2 = 0.7$
	for RMSE, and for different β or δ	2020	1,691.944			$\delta_1 = 0.2 \ \delta_2 = 0.8$
	(according to model 14a)	2021	1,696.505			RMSE for $\alpha_{opt} =$
		2022	1,697.197			0.7144
$15_{a1.}$	Holt's linear trend model with	2018	1,731.578	0.0464	90.392	Ψ for $\alpha_{opt} = 0.9983$
	additive trend for start movement:	2019	1,772.771			Ψ for $_{\beta opt.} = 0.6027$
	$S_1 = y_2 - y_1$, and with α opt. and β opt.	2020	1,813.963			
	for Ψ	2021	1,855.156			
		2022	1,896.348			
$15_{a2.}$	Holt's linear trend model with	2018	1,727.270	0.0502	80.156	RMSE: $\alpha = 0.9856$
	additive trend for start move:	2019	1,764.484			$\beta = 0.1092$
	$S_1 = y_2 - y_1$, and with α opt. and β opt.	2020	1,801.697			
	for RMSE	2021	1,838.910			
		2022	1,876.123			
16 _{a1.}	Holt's linear trend model with	2018	1,731.569	0.0467	90.432	Ψ: $\alpha = 0.9985$
	additive trend for $S_1 = 0$, and with α	2019	1,772.744			$\beta = 0.6023$
	opt. and β opt. for Ψ	2020	1,813.919			
		2021	1,855.094			
		2022	1,896.268			
16_{a2}	Holt's linear trend model with	2018	1,727.819	0.0505	80.459	RMSE: $\alpha = 0.9998$
	additive trend for $S_1 = 0$, and with α	2019	1,765.165			$\beta = 0.1190$
	opt. and β opt. for RMSE	2020	1,802.510			
		2021	1,839.856			
		2022	1877,202			

Cont. table 1.

17 _{a1.}	Holt's linear trend model with	2018	1,721.978	0.0507	81.649	Ψ: $\alpha = 0.9899$
	multiplicative trend for $S_1 = y_2/y_1$,	2019	1,754.418			$\beta = 0.0316$
	and with α opt. and β opt. for Ψ	2020	1,787.470			
	1 1 1	2021	1,821.144			
		2022	1.855.453			
17.2	Holt's linear trend model with	2018	1 735 098	0.0507	80 721	RMSE: $\alpha = 0.9998$
1 / a2.	multiplicative trend for $S_1 = v_2/v_1$	2019	1 780 900	0.0207	00.721	$\beta = 0.0628$
	and with α ont and β ont for RMSE	2017	1,700.900			p 0.0020
	and with a opt. and p opt. for RWSE	2020	1,876,163			
		2021	1,870.103			
10	II alt'a lin aan toon d maa dal aaith	2022	1,923.088	0.0464	80.520	
18 al.	Holt's linear trend model with	2018	1,728.517	0.0464	89.520	$\Psi: \alpha = 0.9984$
	multiplicative trend for $S_1 = 1$, and	2019	1,/6/.612			$\beta = 0.4930$
	with α opt. and β opt. for Ψ	2020	1,807.535			
		2021	1,848.360			
		2022	1,890.106			
18 _{a2.}	Holt's linear trend model with	2018	1,735.570	0.0515	81.282	RMSE: $\alpha = 0,9999$
	multiplicative trend for $S_1 = 1$, and	2019	1,781.866			$\beta = 0,0712$
	with α opt. and β opt. for RMSE	2020	1,829.397			
		2021	1,878.196			
		2022	1,928.296			
19 _{a1}	Holt's linear trend model with	2018	1,721.800	0.0468	84.388	Ψ : $\alpha = 0.9999$
- u1.	additive damped trend for $S_1 = v_2 - v_1$	2019	1 712 477			$\beta = 0.9999 \ \phi = 0.4949$
	and with: α ont β ont and α ont	2020	1 712 465			β 0.5555 ψ 0.4545
	for Ψ	2021	1 705 616			
		2021	1 699 809			
10 .	Holt's linear trend model with	2022	1,077.007	0.0468	80.110	PMSE: $\alpha = 0.0703$
19 _{a2.}	Holt's linear tiend model with additive demned trend for $S = V$.	2018	1,720.022	0.0408	80.119	RWISE. u = 0.9793
	additive damped tiend for $S_1 - y_2 - y_1$,	2019	1,701.071			$\beta = 0.0001 \ \phi = 0.4156$
	and with: α opt., β opt and. φ opt.	2020	1,795.627			
	for RMSE	2021	1,829.695			
		2022	1,863.281			
20 a1.	Holt's linear trend model with	2018	1,721.800	0.0469	84.309	Ψ: α = 0.9999
	additive damped trend for $S_1 = 0$,	2019	1,721.477			$\beta = 0.9999 \ \varphi = 0.4949$
	and with: α opt., β opt and. φ opt.	2020	1,713.465			
	for Ψ	2021	1,705.616			
		2022	1,699.809			
20 _{a2.}	Holt's linear trend model with	2018	1,722.856	0.0504	80.545	RMSE: $\alpha = 0.9899$
	additive damped trend for $S_1 = 0$,	2019	1,754.690			$\beta = 0.1307$
	and with: α opt., β opt and, ω opt.	2020	1,785.365			$\phi = 0.9820$
	for RMSE	2021	1,814.924			T
		2022	1.843.385			
21.1	Holt's linear trend model with	2018	1 717 175	0.0510	82 104	$\Psi \cdot \alpha = 0.9899$
2 1 al.	multiplicative damped trend for	2019	1 744 691	0.0010	02.101	$\beta = 0.0316 \ \phi = 0.0008$
	$S_1 = v_2/v_1$ and with: α ont β ont	2019	1,744.091			$p = 0.0310 \ \varphi = 0.9998$
	$y_2 y_1$, and while a opt., p opt	2020	1,772.040			
		2021	1,801.034			
21		2022	1,829.914	0.0501	80.029	$DMSE_{1} = 0.0200$
$21_{a2.}$	Holt's linear trend model with	2018	1,/31.00/	0.0501	80.928	RMSE: $\alpha = 0.9899$
	multiplicative damped trend for	2019	1,//2.//6			$\beta = 0.0628$
	$S_1 = y_2/y_1$, and with: α opt., β opt	2020	1,815.553			$\phi = 0.9998$
	and. φ opt. for RMSE	2021	1,859.361			
		2022	1,904.227			
22 _{a1.}	Holt's linear trend model with	2018	1,727.874	0.0465	89.458	Ψ: α = 0.9982
	multiplicative damped trend for	2019	1,766.196			$\beta = 0.4935 \phi = 0.9998$
	$S_1 = 1$, and with: α opt.; β opt and.	2020	1,805.369			
	φ opt. for Ψ	2021	1,845.411			
		2022	1,886.340			

Cont	table	1
Com.	uuuu	1

Cont.						
22 _{a2.}	Holt's linear trend model with	2018	1,731.697	0.0517	81.477	RMSE: $\alpha = 0.9899$
	multiplicative damped trend for	2019	1,774.184			$\beta = 0.0712$
	$S_1 = 1$, and with: α opt., β opt and.	2020	1,871.714			$\phi = 0.9998$
	φ opt. for RMSE	2021	1,862.311			T
	1 . I	2022	1,908.003			
23 _{a1.}	Holt's quadratic trend model with	2018	1,862.290	0.0393	70.727	Ψ: α = 0.0001
	additive formula for $S_1 = y_2 - y_1$, and	2019	1,915.889			$\beta = 0.2315 \ \varphi = 0.3017$
	with: α opt., β opt and. φ opt. for Ψ	2020	1,965.536			
		2021	2,023.232			
		2022	2,076.976			
23 _{a2.}	Holt's quadratic trend model with	2018	1,806.171	0.0409	64.960	RMSE: $\alpha = 0.0001$
	additive formula for $S_1 = y_2 - y_1$, and	2019	1,856.092			$\beta = 0.2600$
	with: α opt., β opt and. φ opt. for	2020	1,906.009			$\phi = 0.3789$
	RMSE	2021	1,955.921			
		2022	2,005.828			
24 _{a1.}	Holt's quadratic trend model with	2018	1,906.375	0.0390	78.668	$\Psi: \alpha = 0.0001$
	additive formula for $S_1 = 0$, and	2019	1,966.167			$\beta = 0.5397 \ \phi = 0.9999$
	with: α opt., β opt and. φ opt. for Ψ	2020	2,025.940			,
		2021	2,085.693			
		2022	2,145.427			
24_{a2}	Holt's quadratic trend model with	2018	1,834.603	0.0426	68.825	RMSE: $\alpha = 0.0001$
42.	additive formula for $S_1 = 0$, and	2019	1.889.946			$\beta = 0.5200$
	with α opt β opt and α opt for	2020	1 945 358			$\omega = 0.9999$
	RMSE	2021	2 000 838			φ 0.5777
		2022	2,056,386			
25-1	Brown's double exponential	2018	1 706 754	0.0562	87 928	$\Psi \cdot \alpha = 0.5006$
20 a1.	smoothing (linear) and with α opt	2019	1 732 993	0.0202	07.920	1. u 0.5000
	for Ψ	2020	1 759 231			
		2020	1 785 470			
		2021	1 811 709			
25.0	Brown's double exponential	2018	1,011.705	0.0564	87 931	$RMSE \cdot \alpha = 0.4952$
<i>20</i> a2.	smoothing (linear) and with α ont	2010	1 733 236	0.0504	07.751	RWBL: 0 0.4752
	for RMSE	2019	1,759,555			
	IOI RWISE	2020	1,735,335			
		2021	1,785.875			
26.1	Brown's triple exponential	2022	1,012.174	0.0525	96 930	$\Psi \cdot \alpha = 0.4436$
20a1.	smoothing (quadratic) and with α	2010	1,099.094	0.0525	90.950	1. u = 0.4430
	ont for Ψ	2020	1 722 472			
		2020	1,722.472			
		2021	1,739,000			
26.2	Brown's triple exponential	2022	1,749.229	0.0560	03 750	$PMSE \cdot \alpha = 0.3344$
20a2.	smoothing (quadratia) and with q	2010	1,700.909	0.0300	95.750	KINSE. $a = 0.3344$
	shooting (quadratic), and with a	2019	1,720.465			
		2020	1,734.030			
		2021	1,747.030			
27	Advanced exponential	2022	1,701.203	0.0591	110 026	k-2 and $l-2$ and
∠/a1.	Auvalueu expollential	2018	1,755.501	0.0381	110.830	$\kappa = 5$ and $i = 2$, and with $\beta_i = 0.2 \beta_i = 0.2$
	autoregressive model, and with a	2019	1,770.133			with $p_1 = 0.2 p_2 = 0.3$ $\beta_2 = 0.5 \beta_1 = 0.4$
	opt. for ¥	2020	1,010.903			$\mu_3 = 0.5 0_1 = 0.4$
		2021	1,001.797			$0_2 = 0.0$
27		2022	1,904.030	0.0605	00.100	$\Psi \alpha opt. = 0.9998$
$2/_{a2.}$	Advanced exponential	2018	1,/1/.326	0.0605	98.189	$\kappa = 3$ and $l = 2$, and
	autoregressive model, and with α	2019	1,/55.847			with $\beta_1 = 0.2 \ \beta_2 = 0.3$
	opt. for KMSE	2020	1,/96.368			$\beta_3 = 0.5 \delta_1 = 0.4$
		2021	1,836.890			$\delta_2 = 0.6$
1		2022	1,877.411			KMSE $\alpha opt. = 0.7818$

28.	Creep trend and harmonic weights	2018	1,723.048	0.0171	30.732	k = 4
	method	2019	1,755.618			
		2020	1,788.187			
		2021	1,820.187			
		2022	1,853.326			
29.	Linear model	2018	1,829.988	0.0471	69.933	$R^2 = 0.9417$
		2019	1,884.130			
		2020	1,938.272			
		2021	1,992.414			
		2022	2,046.556			
30.	Logarithmic model	2018	1,831.222	0.0471	69.779	$R^2 = 0.9419$
	_	2019	1,885.104			
		2020	1,938.960			
		2021	1,992.789			
		2022	2,046.591			

Cont. table 1.

y = forecasted variable; $y_t^* =$ expired forecast's value; $S_t =$ smoothed evaluation of increasing time series in t moment of time; $w_i =$ weight of i evaluation of smoothed value or incremental smoothing parameter for increasing time series; $\delta_l =$ weight of smoothed value's increment; k = smoothing constant; l = forecast's smoothing constant; t = time; w = weight attributed by the evaluator to the forecasted variable in t moment of time.

Additional information: when the author carried out the forecast, the steel production in 2018 was not published in steel industry reports; thus, the author carried out the forecast for the year. When official data concerning steel production in 2018 will be published, the managers in enterprises in steel production can compare the real production with the forecast.

Source: own research (Gajdzik, 2019).

Based on the obtained forecasting models, a trend of increasing steel production in the world was found in 18 out of 30 obtained models (the remaining models are marked in grey in Table 1). Figure 2 presents the directions of changes in the forecasted quantities of steel production – an optimistic scenario.

Figure 2. Forecasts of steel production in the world in 2018-2022 (own research on the basis of data from World Steel Association reports).

Therefore (with the optimistic scenarios for steel production in the world), it can be assumed that with the forecasted increase in steel production in the world, it is possible to develop industry 4.0 in the steel industry. Among the proposed models, the best fit was obtained via the creeping trend method, using forecasting with the harmonic weights method. The individual upward trends in changes in the forecasted volume of steel production in the world were divided according to three scenarios: a very optimistic, optimistic and moderately optimistic scenario. In the very optimistic scenario, the forecasted increase in steel production in relation to current production (steel production in 2017) is 20% in 2022, in the optimistic scenario, the increase is approx. 10%, and in moderately optimistic, there is an increase by 5%.

4. Summary

Prepared forecasting models form the basis for planning steel production in the perspective of industrial development 4.0. The obtained forecasts (for many models – table 1) are optimistic, which allows us to adopt a steel industry development strategy. Investments in cyber-physical production systems are expensive. Steel sector enterprises have to reckon with high investment expenditures to increase the scope of automation of continuous steel casting. Metallurgical enterprises invest more and more in robots and industrial manipulators. Industry 4.0 enters both steel mills and companies dealing in the distribution of steel products, which include modern service and distribution centres with fully automated warehouses for steel products.

References

- Birat, J.P. (2002). Innovation paradigms for the steel industry of the 21st Century Future directions for steel industry and continuous casting. *La Revue de Metallurgie CIT*, 11(99), 957.
- 2. Cygler, J., and Gajdzik, B., Sroka, W. (2014). Coopetition as a development stimulator of enterprises in the networked steel sector. *Metalurgija*, *3(53)*, 383-386.
- 3. Gajdzik, B. (2013). *Restrukturyzacja przedsiębiorstw hutniczych w zestawieniach statystycznych i badaniach empirycznych*. Gliwice: Silesian University of Technology.
- 4. Gajdzik, B., and Sroka, W. (2012). Analytic study of the capital restructuring process in metallurgical enterprises around the World and in Poland. *Metalurgija*, *2*(*51*), 265-268.
- 5. Garbarz, B. (2008). Postęp technologiczny w hutnictwie zgodny z zasadą zrównoważonego rozwoju. *Prace Instytutu Metalurgii Żelaza, 3,* 1-7.

- 6. *Iron and Steel Industry*. Deloitte (2018). Retrieved from www2.deloitte.com/content/ dam/deloitte/ru/documents/research/center/Iron_and_Steel_Industry_Report_2018.
- Kunal Suri, Juan Cadavid, Mauricio Alferez, Saadia Dhouib, Sara Tucci-Piergiovanni (2017). Modeling business motivation and underlying processes for RAMI 4.0-aligned cyber-physical production systems. 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). Cyprus: Limassol. Date of Conference: 12-15 Sept. 2017. Date Added to IEEE *Xplore*: 08 January 2018, DOI: 10.1109/ETFA.2017.8247702,. Retrieved from https://ieeexplore.ieee.org/document/ 8247702.
- 8. Lasi, H., and Fettke, P., Feld, T., Hoffmann, M. (2014). Industry 4.0. Business & Information Systems Engineering, 6, 239-242.
- 9. Little, A.D. (1981). *Stratégie et technologie*, ADL during European Management Forum: Davos.
- 10. *Przemysł 4.0 czyli wyzwania współczesnej produkcji*. Report PWC. Retrieved from https://www.pwc.pl/pl/pdf/przemysl-4-0-raport.pdf, 20.05.2018.
- 11. Steel statistical yearbook. Worldsteel (2010), Worldsteel (2017), Worldsteel (2018).